Advanced SearchSearch Tips
Investigation of Change in Air-Sea CO2 Exchange over the East China Sea using Biogeochemical Ocean Modeling
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 30, Issue 3,  2008, pp.325-334
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2008.30.3.325
 Title & Authors
Investigation of Change in Air-Sea CO2 Exchange over the East China Sea using Biogeochemical Ocean Modeling
Park, Young-Gyu; Choi, Sang-Hwa; Yeh, Sang-Wook; Lee, Jung-Suk; Hwang, Jin-Hwan; Kang, Seong-Gil;
  PDF(new window)
A biogeochemical model was used to estimate air-sea exchange over the East China Sea. Since fresh water discharge from the Changjiang River and relevant chemistry were not considered in the employed model, we were not able to produce accurate results around the Changjiang River mouth. This factor aside, the model showed that the East China Sea, away from the Changjiang River mouth, takes approximately of from the atmosphere. The model also showed that biological factors modify the air-sea flux by only a few percent when we assumed that biological activity increased two-fold. Therefore, we can argue that the biological effect is not strong enough over this area within the framework of the current phosphate-based biological model. Compared to the preindustrial era, in 1995 the East China Sea absorbed more . If warming of the sea surface is considered, in addition to the increase in atmospheric concentration, by 2045 the East China Sea would absorb less compared to the non-warming case.
biogeochemical modeling;East China Sea;air-sea exchange;global warming;
 Cited by
Anderson, L. A. and J. L. Sarmiento. 1994. Global ocean phosphate and oxygen simulations. Glob. Biogeochem. Cycles, 9, 621-636 crossref(new window)

Bozec, Y., H. Thomas, K. Elkalay, and H. J. W. de Baar. 2005. The continental shelf pump for $CO_2$ in the North Sea-evidence from summer observation. Mar. Chem., 93, 131-147 crossref(new window)

Cai, W.-J., X. Guo, C.-T. Chen, M. Dai, L. Zhang, W. Zhai, S.E. Lohrenz, and Y. Wang. 2008. A comparative overview of weathering intensity and $HCO_3$ - flux of the world's major rivers with emphasis on the Changjiang, Huanghe, Pearl and Mississippi rivers. Cont. Shelf Res., 23, 1538-1549 crossref(new window)

Chen, C.-T.A., A. Andreev, K.-R. Kim, and M. Yamamoto. 2004. Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific ocean. J. Oceanogr., 60, 17-44 crossref(new window)

Gruber, N. and C. D. Keeling. 2001. An improved estimate of the isotopic air-sea disequilibrium of $CO_2$: Implications for the oceanic uptake of anthropogenic $CO_2$. Geophys. Res. Lett., 28(3), 555-558 crossref(new window)

IPCC. 2007. Climate Change 2007: The physical science basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M. Tignor, H.L. Miller, Jr., and Z. Chen. Cambridge University Press, Cambridge, U.K. 996 p

Lee, K., R.H. Wanninkhof, T. Takahashi, S. Doney, and R. A. Feely. 1998. Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature, 396, 155-159 crossref(new window)

Levitus, S. 1982. Climatological atlas of the world ocean. NOAA Prof. Pap. 13. U.S. Government Printing Office, Washington, D.C. 173 p

Liss, P. and L. Merlivert. 1986. Air-sea exchange rates: Introduction and synthesis. p. 113-127. In: The role of air-sea exchange in geochemical cycling. NATO ASI Series C., Vol. 185, ed. by P. Buat-Menard. D. Reidel Publishing, Dordrecht

Najjar, R.G., J.L. Sarmiento, and J.R. Toggweiler. 1992. Downward transport and fate of organic matter in the ocean: Simulation with a general circulation model. Glob. Biogeochem. Cycles, 6, 45-76 crossref(new window)

Orr, J.C., E. Maier-Reimer, U. Mikolajewicz, P. Monfray, J.L. Sarmiento, J.R. Toggweiler, N.K. Taylor, J. Palmer, N. Gruber, C.L. Sabine, C. Le Quéré, R.M. Key, and J. Boutin. 2001. Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Glob. Biogeochem. Cycles, 15(1), 43-60 crossref(new window)

Pacanowski, R.C.P. and S.M. Griffies. 1999. MOM3.0 Manual. Available from WWW: [cited 2008-07-10]

Peng, T.-H., J.-J. Hung, R. Wanninkhof, and F. J. Millero. 1999. Carbon budget in the East China Sea in spring. Tellus, 51B, 531-540

Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T-H. Peng, A. Kozyr, T. Ono, and A.F. Rios. 2004. The oceanic sink for anthropogenic $CO_2$. Science, 305(5682), 367-371 crossref(new window)

Sarmiento, J.L. and N. Gruber. 2002. Sinks for anthropogenic carbon. Physics Today, 55(8), 30-36 crossref(new window)

Shim, J., D. Kim, Y.C. Kang, J.H. Lee, S.-T. Jang, and C.-H. Kim. 2007. Seasonal variations in p$CO_2$ and its controlling factors in surface seawater of the northern East China Sea. Cont. Shelf Res., 27, 2623-2636 crossref(new window)

Siegenthaler, U. and J. Sarmiento. 1993. Atmospheric carbon dioxide and the ocean. Nature, 365, 119-125 crossref(new window)

Sverdrup, H.U., M.W. Johnson, and R.H. Fleming. 1942. The oceans: Their physics, chemistry and general biology. Prentice-Hall, Englewood Cliffs, New York. 1087 p

Takahashi, T., J. Olafsson, J. Goddard, D. Chipman, and S. Sutherland. 1993. Seasonal variations of $CO_2$ and nutrients in the high-latitude surface oceans: A comparative study. Glob. Biogeochem. Cycles, 7(4), 843-878 crossref(new window)

Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R.A. Feely, C. Sabine, J. Olafsson, and Y. Nojiri. 2002. Global sea-air $CO_2$ flux based on climatological surface ocean p$CO_2$, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 1601-1622 crossref(new window)

Thomas, H., England, M.H., and V. Ittekkot. 2001. An offline 3D model of anthropogenic $CO_2$ uptake by the oceans. Geophys. Res. Lett., 28(3), 547-550 crossref(new window)

Tsunogai, S., S. Watanabe, J. Nakamura, T. Ono, and T. Sato. 1997. A Preliminary Study of Carbon System in the East China Sea. J. Oceanogr., 53, 9-17 crossref(new window)

Tsunogai, S., S. Watanabe, and T. Sato. 1999. Is there a 'continental shelf pump' for the absorption of atmospheric $CO_2$? Tellus, 51B, 701-712

Walsh, J.J. 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350, 53-55 crossref(new window)

Wang, S.-L., C.-T.A. Chen, C.-H. Hong, and C.-S. Chung. 2000. Carbon dioxide and related parameters in the East China Sea. Cont. Shelf Res., 20, 525-544 crossref(new window)

Weiss, R. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem., 2, 203-205 crossref(new window)

Wollast, R. 1998. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. p. 213-252. In: The Sea, ed. by K.H. Brink and A.R. Robinson. John Wiley & Sons, New York