Advanced SearchSearch Tips
Evaluation of Jeju/Tsushima Hermatypic Corals as Sea Surface Temperature (SST) Recorders
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 30, Issue 3,  2008, pp.351-359
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2008.30.3.351
 Title & Authors
Evaluation of Jeju/Tsushima Hermatypic Corals as Sea Surface Temperature (SST) Recorders
Hyeong, Ki-Seong; Shimamura, Michiyo; Watanabe, Tsuyoshi; Yamano, Hiroya; Sugihara, Kaoru; Kim, Jong-Uk;
  PDF(new window)
In an effort to develop high-resolution sea surface temperature (SST) proxies for mid-latitude regions, two massive reef-building coral species, Alveopora and Favia, were collected from Jeju and Tsushima Islands, respectively. Their skeletons were subsequently analyzed for annual growth banding, Sr/Ca and Mg/Ca ratios. Hermatypic corals are thinly distributed in the waters of Jeju Island, where Alveopora japonica was the only dominant coral species. A higher diversity of hermatypic corals were observed in the waters of Tsushima Island, where Favia sp. was the most common coral species and even forming an about 6-m-high reef structure. Both Alveopora and Favia showed annual growth layers consisting of couplets of high- and low-density bands. Sr/Ca ratio of both species and Mg/Ca ratio of Alveopora also showed seasonal variation, likely reflecting SST variation. These results suggest the possibility that Alveopora and Favia species can be used as potential SST proxies. However, this study also highlights the potential growth disturbance of middle latitude corals due to high rainfall during monsoon and low SST during winter. This possibility should be taken into account in the investigation of Sr/Ca(Mg/Ca)-SST relationships.
paleo-SST proxy;Alveopora;Favia;Jeju;Tsushima;
 Cited by
An Assemblage of Mollusks Associated with the High Latitude Scleractinian Coral Alveopora japonica (Eguchi 1968) in Jeju Island, off the South Coast of Korea,;;;;;;;;;

Ocean Science Journal, 2016. vol.51. 1, pp.21-31 crossref(new window)
A skeletal Sr/Ca record preserved inDipsastraea(Favia)speciosaand implications for coral Sr/Ca thermometry in mid-latitude regions, Geochemistry, Geophysics, Geosystems, 2013, 14, 8, 2873  crossref(new windwow)
An assemblage of mollusks associated with the high latitude scleractinian coral Alveopora japonica (Eguchi 1968) in Jeju Island, off the south coast of Korea, Ocean Science Journal, 2016, 51, 1, 21  crossref(new windwow)
Asami, R., T. Yamada, Y. Iryu, C.P. Meyer, T.M. Quinn, and G. Paullay. 2004. Carbon and oxygen isotopic composition of a Guam coral and their relationships to environmental variables in the western Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol., 212, 1-22 crossref(new window)

Asami, R., T. Yamada, Y. Iryu, T.M. Quinn, C.P. Meyer, and G. Paullay. 2005. Interannual and decadal variability of the western Pacific sea surface condition for the years 1787-2000: Reconstruction based on stable isotope record from a Guam coral. J. Geophys. Res., 110, C05018. doi: 10.1029/2004JC002555 crossref(new window)

Beck, J.W., R.L. Edwards, E. Ito, F.W. Taylor, J. Recy, F. Rougerie, P. Joannot, and C. Henin. 1992. Sea-surface temperature from coral skeletal strontium/calcium ratios. Science, 257, 644-647 crossref(new window)

Bradley, R.S. 1999. Paleoclimatology: Reconstructing climates of the quarternary. International Geophysics Series 64. Academic Press, San Diego. 613 p

Boiseau, M., A. Juillet-Leclerc, P. Yiou, B. Salvat, P. Isdale, and M. Guillaume. 1998. Atmospheric and oceanic evidences of El Nino-Southern Oscillaton events in the south central Pacific Ocean from coral stable isotopic records over the last 137 years. Paleoceanogr., 13, 671-685 crossref(new window)

Cane, M.A. 1983. Oceanographic events during El Nino. Science, 222, 1189-1195 crossref(new window)

Cole, J.E., R.G. Fairbanks, and G.T. Shen. 1993. Recent variability in the Southern Oscillation: Isotopic results from a Tarawa Atoll coral. Science, 260, 1970-1973 crossref(new window)

Correge, T. 2006. Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeogr. Palaeoclimatol. Palaeoecol., 232, 408-428 crossref(new window)

Eugen, M.R. and J.M. Wallace. 1983. Meteorological aspects of the El Nino/Southern Oscillation. Science, 222, 1195-1202 crossref(new window)

Evans, M.N., R.G. Fairbanks, and J.L. Rubenstone. 1998. A proxy index of ENSO teleconnections. Nature, 394, 732-733 crossref(new window)

Evans, M.N., A. Kaplan, and M. Cane. 2000. Intercomparison of coral oxygen isotope data and histrical sea surface temperature (SST): Potential for coral-based SST field reconstructions. Paleoceanogr., 15, 551-563 crossref(new window)

Fallon, S.J., M.T. McCulloch, R. van Woesik, and D.J. Sinclair. 1999. Corals at their latitudinal limits: Laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet. Sci. Lett., 172, 221-238 crossref(new window)

Fallon, S.J., M.T. McCulloch, and C. Alibert. 2003. Examining water temperature proxies in Porites corals from the Great Barrier Reef: A cross-shelf comparison. Coral Reefs, 22, 389-404 crossref(new window)

Gagan, M.K., L.K. Ayliffe, J.W. Beck, J.E. Cole, E.R.M. Druffel, R.B. Dunbar, and D.P. Schrag. 2000. New views of tropical paleoclimates from corals. Quat. Sci. Rev., 19, 45-64 crossref(new window)

Gong, D. and J. Luterbacher. 2008. Variability of the lowlevel cross-equatorial jet of the western Indian Ocean since 1660 as derived from coral proxies. Geophys. Res. Lett., 35, L01705. doi:10.1029/2007GL032409 crossref(new window)

Hendry, E.J., M.K. Gagan, C. Alibert, M.T. McCulloch, J.M. Lough, and P.J. Isdale. 2002. Abrupt decrease in tropical Pacific sea surface salinity at the end of Little Ice Age. Science, 295, 1511-1514 crossref(new window)

Inoue, M., M. Nohara, T. Okai, A. Suzuki, and H. Kawahata. 2003. Trace element concentrations in carbonate reference materials: Coral JCp-1 and giant clam JCt-1 by inductively coupled plasma mass spectrometry. Goldschmidt Conf. Abstr., A173

Mitsuguchi, T., E. Matsumoto, O. Abe, T. Uchida, and P.J. Isdale. 1996. Mg/Ca thermometry in coral skeletons. Science, 274, 961-963 crossref(new window)

Mitsuguchi, T., T. Uchida, E. Matsumoto, P.J. Isdale, and T. Kawana. 2001. Variations in Mg/Ca, Na/Ca and Sr/Ca ratios of coral skeletons with chemical treatments: Implications for carbonate geochemistry. Geochim. Cosmochim. Acta, 65, 2865-2874 crossref(new window)

Mitsuguchi, T., E. Matsumoto, and T. Uchida. 2003. Mg/Ca and Sr/Ca ratios of Porites coral skeleton: Evaluation of the effect of skeletal growth rate. Coral Reefs, 22, 381-388 crossref(new window)

Philander, S.G.H. 1983. El Nino Southern Oscillation phenomena. Nature, 302, 295-301 crossref(new window)

Quinn, T.M., F.W. Taylor, and T.J. Crowley. 1993. A 173 year stable isotope record from a tropical south pacific coral. Quater. Sci. Rev., 12, 407-418 crossref(new window)

Quinn, T.M. and D.E. Sampson. 2002. A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanogr., 17, 1062. doi:10.1029/ 2000PA000528 crossref(new window)

Rosenthal, Y. 2007. Elemental proxies for reconstructing Cenozoic seawater paleotemperatures from calcareous fossils. p. 765-797. In: Proxies in late cenozoic paleoceanography, ed. by H.-M. Claude and A.D. Vernal. Elsevier, Amsterdam

Shen, G.T. and E.A. Boyle. 1988. Determination of lead, cadmium and other trace metals in annually-banded corals. Chem. Geol., 67, 47-62 crossref(new window)

Shen, C.-C., T. Lee, K.-K. Liu, H.-H. Hsu, R.L. Edwards, C.-H. Wang, M.-Y. Lee, Y.-G. Chen, H.-J. Lee, and H.- T. Sun. 2005. An evaluation of quantitative reconstruction of past precipitation records using coral skeletal Sr/Ca and ${\delta}^{18}O$ data. Earth Planet. Sci. Lett., 237, 370-386 crossref(new window)

Shimamura, M., T. Oba, G. Xu, B. Lu, L. Wang, M. Murayama, K. Toyoda, and A. Winter. 2005. Fidelity of ${\delta}^{18}O$ as a proxy for sea surface temperature: Influence of variable coral growth rates on the coral Porites lutea from Hainan Island, China. Geochem. Geophys. Geosyst, 6, Q09017. doi:10.1029/2005GC000966 crossref(new window)

Shimamura, M., L. Hyeong, C.M. Yoo, T. Watanabe, T. Irino, and H.-S. Jung. 2008. High resolution stable isotope records of sclreractinian corals near Ishigaki Island: Their implicatiion as a potential paleoclimatic recorder in middle latitude regions. Geosci. J., 12, 25-31 crossref(new window)

Shrag, D.P. 1999. Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanogr., 14, 97-102 crossref(new window)

Sun, Y., M. Sun, G. Wei, T. Lee, B. Nie, and Z. Yu. 2004. Strontium contents of Porites coral from Xisha Island, South China Sea: A proxy for sea-surface temperature of the 20th century. Paleoceanogr., 19, PA2004. doi:10.0007/ s00338-004-0467-x crossref(new window)

Watanabe, T., M. Minagawa, T. Oba, and A. Winter. 2001. Pretreatment of coral aragonite for Mg and Sr analysis: Implications for coral thermometers. Geochem. J., 35, 265-269 crossref(new window)

Yamano, H. 2004. Oki Islands and Goto Archipelago. p. 248. In: Coral Reefs of Japan, ed. by Japanese Coral Reef Society and Ministry of the Environment. Ministry of the Environment, Tokyo