Advanced SearchSearch Tips
Possible Roles of Antarctic Krill Proteases for Skin Regeneration
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 30, Issue 4,  2008, pp.467-472
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2008.30.4.467
 Title & Authors
Possible Roles of Antarctic Krill Proteases for Skin Regeneration
Lee, Sung-Gu; Koh, Hye-Yeon; Lee, Hong-Kum; Yim, Joung-Han;
  PDF(new window)
Antarctic krill has a strong proteolytic enzyme system, which comes from a combination of several proteases. This powerful activity can be easily detected by krill`s superior post mortem autolysis. Mammalian skin consists of epidermis and dermal connective tissue, and functions as a barrier against threatening environments. A clot in a wound site of the skin should be removed for successful skin regeneration. Epithelial cells secrete proteases to dissolve the clot. In previous studies Antarctic krill proteases were purified and characterized. The proteolytic enzymes from Antarctic krill showed higher activity than mammalian enzymes. It has been suggested that these krill clean up the necrotic skin wound to induce a natural healing ability. The enzymes exhibited additional possibilities for several other biomedical applications, including dental plaque controlling agent and healing agent for corneal alkali burn. Considering that these versatile activities come from a mixture of several enzymes, discovering other proteolytic enzymes could be another feasible way to enhance the activity if they can be used together with krill enzymes. Molecular cloning of the krill proteases should be carried out to study and develop the applications. This review introduces possible roles of the unique Antarctic krill proteases, with basic information and suggestion for the development of an application to skin regeneration.
Antarctic;krill;proteases;skin regeneration;debridement;
 Cited by
Cold-Adapted Proteases as an Emerging Class of Therapeutics, Infectious Diseases and Therapy, 2013, 2, 1, 15  crossref(new windwow)
Anheller, J.E., L. Hellgren, B. Karlstam, and J. Vincent. 1989. Biochemical and biological profile of a new enzyme preparation from Antarctic krill (E. superba) suitable for debridement of ulcerative lesions. Arch. Dermato. Res. 281(2), 105-110 crossref(new window)

Benjamin, D.C., S. Kristjansdottir, and A. Gudmundsdottir. 2001. Increasing the thermal stability of euphauserase. A cold-active and multifunctional serine protease from Antarctic krill. Eur. J. Biochem., 268(1), 127-131 crossref(new window)

Berg, C.H., S. Kalfas, M. Malmsten, and T. Arnebrant. 2001. Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases originating from Euphausia superba for plaque control. Eur. J. Oral Sc., 109(5), 316-324 crossref(new window)

Bunea, R., K. El Farrah, and L. Deutsch. 2004. Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia. Altern. Med. Rev., 9(4), 420-428

Clarke, A. and P.A. Tyler. 2008. Adult antarctic krill feeding at abyssal depths. Curr. Biol., 18(4), 282-285 crossref(new window)

Compton, C.C., J.M. Gill, D.A. Bradford, S. Regauer, G.G. Gallico, and N.E. O'Connor. 1989. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. Lab Invest., 60(5), 600-612

Denner, E.B., B. Mark, H .J. Busse, M. Turkiew icz, and W. Lubitz. 2001. Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a coldadapted metalloprotease. Syst. Appl. Microbiol., 24(1), 44-53 crossref(new window)

Ellingsen, T.E. and V. Mohr. 1987. Biochemistry of the autolytic processes in Antarctic krill post mortem. Autoproteolysis. Biochem. J., 246(2), 295-305 crossref(new window)

Fedotova, N.I., V.S. Baranov, S.K. Mikhailov, and I.M. Skurikhin. 1977. Changes in the amino acid makeup of "Ocean" krill paste from the methods of its culinary preparation. Vopr. Pitan., no.3. 84-88

Fisher, C., S. Gilbertson-Beadling, E.A. Powers, G. Petzold, R. Poorman, and M.A. Mitchell. 1994. Interstitial collagenase is required for angiogenesis in vitro. Dev. Biol., 162(2), 499-510 crossref(new window)

Grinnell, F., C.H. Ho, and A. Wysocki. 1992. Degradation of fibronectin and vitronectin in chronic wound fluid: analysis by cell blotting, immunoblotting, and cell adhesion assays. J. Invest. Dermatol., 98(4), 410-416 crossref(new window)

Grondahl-Hansen, J., L.R. Lund, E. Ralfkiaer, V. Ottevanger, and K. Dano. 1988. Urokinase- and tissue-type plasminogen activators in keratinocytes during wound reepithelialization in vivo. J. Invest. Dermatol., 90(6), 790-795 crossref(new window)

Grynbaum, M.D., P. Hentschel, K. Putzbach, J. Rehbein, M. Krucker, G. Nicholson, and K. Albert. 2005. Unambiguous detection of astaxanthin and astaxanthin fatty acid esters in krill (Euphausia superba Dana). J. Sep. Sci., 28(14), 1685-1693 crossref(new window)

Gudmundsdottir, A. 2002. Cold-adapted and mesophilic brachyurins. Biol. Chem., 383(7-8), 1125-1131 crossref(new window)

Hellgren, L., V. Mohr, and J. Vincent. 1986. Proteases of Antarctic krill--a new system for effective enzymatic debridement of necrotic ulcerations. Experientia, 42(4), 403-404 crossref(new window)

Karlstam, B., J. Vincent, B. Johansson, and C. Bryno. 1991. A simple purification method of squeezed krill for obtaining high levels of hydrolytic enzymes. Prep. Biochem., 21(4), 237-256 crossref(new window)

Kidd, P.M. 2007. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern. Med. Rev., 12(3), 207-227

Konagaya, S. 1980. Protease activity and autolysis of Antarctic krill. Nippon Suisan Gakk., 46, 175-183 crossref(new window)

Kunachowicz, H., E. Czarnowska-Misztal, W. Klys, M. Wicinska, and M. Jania. 1978. Assessment of nutritional value of semi-processed products of krill. II. Nutritional value of proteins. Roc.z Panstw. Zakl. Hig., 29(6), 585-592

Martin, P. 1997. Wound healing--aiming for perfect skin regeneration. Science, 276(5309), 75-81 crossref(new window)

Mekkes, J.R., I.C. Le Poole, P.K. Das, A. Kammeyer, and W. Westerhof. 1997. In vitro tissue-digesting properties of krill enzymes compared with fibrinolysin/DNAse, papain and placebo. Int. J. Biochem. Cell Biol., 29(4), 703-706 crossref(new window)

Mekkes, J.R., I.C. Le Poole, P.K. Das, J.D. Bos, and W. Westerhof. 1998. Efficient debridement of necrotic wounds using proteolytic enzymes derived from Antarctic krill: a double-blind, placebo-controlled study in a standardized animal wound model. Wound Repair Regen., 6(1), 50-57 crossref(new window)

Moretti, V.M., T. Mentasti, F. Bellagamba, U. Luzzana, F. Caprino, G.M. Turchini, I. Giani, and F. Valfre. 2006. Determination of astaxanthin stereoisomers and colour attributes in flesh of rainbow trout (Oncorhynchus mykiss) as a tool to distinguish the dietary pigmentation source. Food Addit. Contam., 23(11), 1056-1063 crossref(new window)

Mroz, K. 1981. Effect of krill feeding on the animal organism. Czas. Stomatol., 34(2), 155-158

Nishimura, K., Y. Kawamura, T. Matoba, and D. Yonezawa. 1983. Classification of Proteases in Antarctic Krill. Agric. Biol. Chem., 47(11), 2577-2583 crossref(new window)

Osnes, K.K. 1985. On the purification and characterization of three anionic, serine-type peptide hydrolases from Antarctic krill, Euphausia superba. Comp. Biochem. Physiol., 82(B), 607-619

Osnes, K.K. 1986. On the purification and characterization of exopeptidases from Antarctic krill Euphausia superba. Comp. Biochem. Physiol., 83(B), 445-448 crossref(new window)

Osnes, K.K., T.E. Ellingsen, and V. Mohr. 1986. Hydrolysis of proteins by peptide hydrolases of Antarctic krill Euphausia superba. Comp. Biochem. Physiol., 83(B), 801-805

Perona, J.J., C.A. Tsu, C.S. Craik, and R.J. Fletterick. 1997. Crystal structure of an ecotin-collagenase complex suggests a model for recognition and cleavage of the collagen triple helix. Biochemistry, 36(18), 5381-5392 crossref(new window)

Piekarska, J. and U. Rutkowska. 1978. Nutritional value of semi-processed food products obtained from krill. I. Determination of basic components and minerals in 4 semi-processed krill products. Rocz. Panstw. Zakl. Hig., 29(5), 533-542

Rehbein, H. 1981. Amino acid composition and pepsin digestibility of krill meal. J. Agric. Food Chem., 29(3), 682-684 crossref(new window)

Rys, R. and J. Koreleski. 1979. Preliminary investigation on the nutritive value of krill meal in the feed of broiler chickens and laying hens. Arch. Tierernahr., 29(3), 181-188 crossref(new window)

Saarialho-Kere, U.K., E.S. Chang, H.G. Welgus, and W.C. Parks. 1992. Distinct localization of collagenase and tissue inhibitor of metalloproteinases expression in wound healing associated with ulcerative pyogenic granuloma. J. Clin. Invest., 90(5), 1952-1957 crossref(new window)

Saarialho-Kere, U.K., A.P. Pentland, H. Birkedal-Hansen, W.C. Parks, and H.G. Welgus. 1994. Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds. J. Clin. Invest., 94(1), 79-88 crossref(new window)

Salo, T., M. Makela, M. Kylmaniemi, H. Autio-Harmainen, and H. Larjava. 1994. Expression of matrix metalloproteinase- 2 and -9 during early human wound healing. Lab Invest., 70(2), 176-182

Sampalis, F., R. Bunea, M.F. Pelland, O. Kowalski, N. Duguet, and S. Dupuis. 2003. Evaluation of the effects of Neptune Krill Oil on the management of premenstrual syndrome and dysmenorrhea. Altern. Med. Rev., 8(2), 171-179

Sangwan, V.S., E.K. Akpek, I. Voo, T. Zhao, V. Pinar, J. Yang, W. Christen, S. Baltatzis, R. Wild, and C.S. Foster. 1999. Krill protease effects on wound healing after corneal alkali burn. Cornea, 18(6), 707-711 crossref(new window)

Sidhu, G.S., W.A. Montgomery, G.L. Holloway, A.R. Johnson, and D.M. Walker. 1970. Biochemical composition and nutritive value of krill (Euphausia superba Dana). J. Sci. Food Agric., 21(6), 293-296 crossref(new window)

Siwek, M., A. Bari Noubar, J. Bergmann, B. Niemeyer, and B. Galunsky. 2006. Enhancement of enzymatic digestion of Antarctic krill and successive extraction of selenium organic compounds by ultrasound treatment. Anal. Bioanal. Chem., 384(1), 244-249 crossref(new window)

Siwek, M., B. Galunsky, and B. Niemeyer. 2005. Isolation of selenium organic species from antarctic krill after enzymatic hydrolysis. Anal. Bioanal. Chem., 381(3), 737-741 crossref(new window)

Sjodahl, J., A. Emmer, J. Vincent, and J. Roeraade. 2002. Characterization of proteinases from Antarctic krill (Euphausia superba). Protein Expr. Purif., 26(1), 153-161 crossref(new window)

Takaichi, S., K. Matsui, M. Nakamura, M. Muramatsu, and S. Hanada. 2003. Fatty acids of astaxanthin esters in krill determined by mild mass spectrometry. Comp. Biochem. Physiol. B., 136(2), 317-322 crossref(new window)

Tarnuzzer, R.W. and G.S. Schultz. 1996. Biochemical analysis of acute and chronic wound environments. Wound Repair Regen., 4(3), 321-325 crossref(new window)

Tou, J.C., J. Jaczynski, and Y.C. Chen. 2007. Krill for human consumption: nutritional value and potential health benefits. Nutr. Rev., 65(2), 63-77 crossref(new window)

Turkiewicz, M., E. Galas, and H. Kalinowska. 1991. Collagenolytic serine proteinase from Euphausia superba Dana (Antarctic krill). Comp. Biochem. Physiol. B., 99(2), 359-371 crossref(new window)

Turkiewicz, M., E. Galas, H. Kalinowska, I. Romanowska, and M. Zielinska. 1986. Purification and characterization of a proteinase from Euphausia superba Dana (Antarctic krill). Acta. Biochim. Pol., 33(2), 85-99

Venkatraman, J.T., B. Chandrasekar, J.D. Kim, and G. Fernandes. 1994. Effects of n-3 and n-6 fatty acids on the activities and expression of hepatic antioxidant enzymes in autoimmune-prone NZBxNZW F1 mice. Lipids, 29(8), 561-568 crossref(new window)

Westerhof, W., C.J. van Ginkel, E.B. Cohen, and J.R. Mekkes. 1990. Prospective randomized study comparing the debriding effect of krill enzymes and a non-enzymatic treatment in venous leg ulcers. Dermatologica, 181(4), 293-297 crossref(new window)

Zaleska-Freljan, K. and L. Cywinska. 1991. The effect of different krill meals fed to laboratory rats on their blood indices. Comp. Biochem. Physiol. A., 98(1), 133-136 crossref(new window)