Advanced SearchSearch Tips
Genetic Diversity of the Mud Crab Scylla serrata in Micronesia based on Microsatellite Marker Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 31, Issue 4,  2009, pp.319-326
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2009.31.4.319
 Title & Authors
Genetic Diversity of the Mud Crab Scylla serrata in Micronesia based on Microsatellite Marker Analysis
Jang, Yo-Soon; Yi, Soon-Kil; Noh, Choong-Hwan; Oh, Sung-Yong;
  PDF(new window)
Analysis of four microsatellite markers from Mud Crab Scylla serrata revealed that there is high level of genetic diversity within this species. Genetic diversity of S. serrata was calculated using allele diversity, observed heterozygosity, expected heterozygosity (Het-exp), polymorphic information content, gene differentiation and Nei's distance. Mean polymorphic information content value was 0.797, which reflected high level of polymorphism across the loci of S. serrata. The Palau population has the highest genetic diversity (Het-exp=0.871), while the Kosrae population has the lowest genetic diversity (Hetexp=0.806). However, the geographical genetic distance among S. serrata populations from Yab, Chuuk, Pohnpei, Kosrae, and Palau were low (0.20090.3350). These results suggest that despite their wide distribution, S. serrata are no different in geographical genetic diversity within the five sampled locations.
Mud crab;Scylla serrata;genetic diversity;microsatellite;Micronesia;
 Cited by
Evidence of incomplete lineage sorting or restricted secondary contact in Lateolabrax japonicus complex (Actinopterygii: Moronidae) based on morphological and molecular traits, Biochemical Systematics and Ecology, 2016, 66, 98  crossref(new windwow)
Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3(9):2303-2308 crossref(new window)

Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314-331

Brown IW (1993) Mangrove crabs. In: Wright A, Hill L (eds), Nearshore marine resources of the South Pacific: Information for fisheries development and management, forum fisheries agency, Honiara, Solomon Islands, pp 609-642

FAO (2008) Species fact sheet. Scylla serrata (null, 2001). FAO Species identification and data program. Text and table on the internet. Accessed 5 Mar 2009

FRDC (2005) Methods for monitoring the abundance and habitat of the northern australian mud crab Scylla serrata. Fisheries Research & Development Council (FRDC) Project 2000/142 Final Repoprt pp 5-8

Gopurenko D, Hughes JM (2002) Regional patterns of genetic structure among Australian populations of the mud crab, Scylla serrata (Crustacea : Decapoda): Evidence from mitochondrial DNA. Mar. Freshw. Res 53(5):849-857 crossref(new window)

Gopurenko D, Hughes JM, Jing M (2002) Identification of polymorphic microsatellite loci in the mud crab Scylla serrata (Brachyura: Portunidae). Mol Ecol Notes 2(4) 481-483 crossref(new window)

Hänfling B, Weetman D (2003) Characterization of microsatellite loci for the Chinese mitten crab, Eriocheir sinensis. Mol Ecol Notes 3(1):15-17 crossref(new window)

Hill BJ (1975) Abundance, breeding and growth of the crab Scylla serrata in two South African estuaries. Mar Biol 32(2):119-126 crossref(new window)

Jensen PC, Bentzen P (2004) Isolation and inheritance of microsatellite loci in the Dungeness crab (Brachyura: Cancridae: Cancer magister). Genome 47(2):325-331 crossref(new window)

Keenan CP (1999) The fourth species of Scylla. In: Keenan CP, Blackshaw A (eds) Mud crab aquaculture and biology ACIAR proceedings, vol 78, pp 48-58

Klinbunga S, Boonyapakdee A, Pratoomchat (2000) Genetic diversity and species-biagnostic markers of mud crab (Genus Scylla) in eastern Thailand determined by RAPD analysis. Mar Biotechnol 2(2):180-187

Liu ZJ, Cordes JF (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238(1):1-37 crossref(new window)

Nei M (1972) Genetic distance between population. Am. Nat. 106(949):283-292 crossref(new window)

Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583-590

Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenic trees from molecular data. J Mol Evol 19(2):153-170 crossref(new window)

Olufowote JO, Xu Y, Chen X, Goto M, McCouch SR, Park WD, Beachell HM, Dilday RH (1997) Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome 40(3):370-378 crossref(new window)

Ortí G, Pearse DE, Avise JC (1997) Phylogenetic assessment of length variation at a microsatellite locus. Proc Natl Acad Sci U S A 94(20):10745-10749 crossref(new window)

Ota T (1993) DISPAN. Pensylvania State University, PA. USA.

Park S (2000) Microsatellite Toolkit for MS Excel 97 or 2000 (personel communication)

Tepolt CK, Bagley MJ, Geller JB, Blum MJ (2006) Characterization of microsatellite loci in the European green crab (Carcinus maenas). Mol Ecol Notes 6(2):343-345 crossref(new window)

Urbani N, Sevigny JM, Sainte-Marie B, Zadworny D, Kuhnlein U (1998) Identification of microsatellite markers in the snow crab Chionoecetes opilio. Mol Ecol 7(3):357-358 crossref(new window)

Yi SK, Lee SK, Lee JM (2009). Preliminary study of seed production of the micronesian mud crab Scylla serrata(Crustacea: Portunidae) in Korea. Ocean and Polar Res 31(3):257-264 crossref(new window)

Zhongbao LI, Shaojing LI, Guizhong W (2004) Genetic diversity and differentiation of mud crab Scylla serrata populations from southeastern China. Acta Oceanol Sin 23(2):309-316