JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparison of Sulfate Reduction Rates Associated with Geochemical Characteristics at the Continental Slope and Basin Sediments in the Ulleung Basin, East Sea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 32, Issue 3,  2010, pp.299-307
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2010.32.3.299
 Title & Authors
Comparison of Sulfate Reduction Rates Associated with Geochemical Characteristics at the Continental Slope and Basin Sediments in the Ulleung Basin, East Sea
You, Ok-Rye; Mok, Jin-Sook; Kim, Sung-Han; Choi, Dong-Lim; Hyun, Jung-Ho;
  PDF(new window)
 Abstract
In conjunction with geochemical characteristics, rate of sulfate reduction was investigated at two sediment sites in the continental slope and rise (basin) of the Ulleung Basin in the East Sea. Geochemical sediment analysis revealed that the surface sediments of the basin site (D2) were enriched with manganese oxides (348 ) and iron oxides (133 ), whereas total reduced sulfur (TRS) in the solid phase was nearly depleted. Sulfate reduction rates (SRRs) ranged from 20.96 to 92.87 nmol at the slope site (M1) and from 0.65 to 22.32 nmol at the basin site (D2). Depth integrated SRR within the top 10 cm depth of the slope site (M1; 5.25 mmol ) was approximately 6 times higher than that at the basin site (D2; 0.94 mmol ) despite high organic content (>2.0% dry wt.) in the sediment of both sites. The results indicate that the spatial variations of sulfate reduction are affected by the distribution of manganese oxide and iron oxide-enriched surface sediment of the Ulleung Basin.
 Keywords
sulfate reduction;manganese oxide;iron oxide;continental margin;Ulleung Basin;
 Language
Korean
 Cited by
1.
16S rRNA 유전자 분석방법을 이용한 동해 울릉분지 심해 퇴적물 내 고세균 군집 구조 및 다양성의 수직분포 특성연구,김보배;조혜연;현정호;

Ocean and Polar Research, 2010. vol.32. 3, pp.309-319 crossref(new window)
2.
생지화학적 지표를 이용한 서해안 갯벌 퇴적층에서의 유기물 순환에 관한 연구,이동헌;이준호;정갑식;우한준;강정원;신경훈;하선용;

Ocean and Polar Research, 2014. vol.36. 1, pp.25-37 crossref(new window)
3.
Rates of Total Oxygen Uptake of Sediments and Benthic Nutrient Fluxes Measured using an in situ Autonomous Benthic Chamber in the Sediment of the Slope off the Southwestern Part of Ulleung Basin, East Sea,;;;;;;;;

Ocean Science Journal, 2015. vol.50. 3, pp.581-588 crossref(new window)
1.
Organic Matter Cycle by Biogeochemical Indicator in Tidal Mud Flat, West Coast of Korea, Ocean and Polar Research, 2014, 36, 1, 25  crossref(new windwow)
2.
Rates of total oxygen uptake of sediments and benthic nutrient fluxes measured using an in situ autonomous benthic chamber in the sediment of the slope off the southwestern part of Ulleung Basin, East Sea, Ocean Science Journal, 2015, 50, 3, 581  crossref(new windwow)
 References
1.
김동선, 최만식, 오혜영, 김경희, 노재훈 (2009) 동해 서남해역에서 여름철 $^{234}Th/^{238}U$ 비평형을 이용한 입자상 유기탄소 침강플럭스 추정. 한국해양학회지 바다 14(1):1-9

2.
김보배, 조혜연, 현정호 (2010) 16S rRNA 유전자 분석방법을 이용한 동해 울릉분지 심해 퇴적물 내 고세균 군집 구조 및 다양성의 수직분포 특성 연구. Ocean Polar Res Submitted

3.
김성한, 목진숙, 정정호, 장윤영, 최광순, 현정호 (2007) 정체된 시화 인공습지와 해수유통이 활발한 강화 갯벌에서의 혐기성 유기물 분해능 및 분해경로 비교. 한국습지학회지 9(1):1-11

4.
목진숙, 조혜연, 현정호 (2005) 강화도 남단 갯벌의 혐기성 유기물 분해능과 황산염 환원력 및 저서 동물이 이에 미치는 잠재적 영향. 한국해양학회지 바다 10(1):33-46

5.
현정호, 이홍금, 권개경 (2003) 해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성. 한국해양학회지 바다 8(2):210-224

6.
Aller RC (1990) Bioturbation and manganese cycling in hemipelagic sediments. Phil Trans R Soc Lond 331:51-68 crossref(new window)

7.
Amiel D, Cochran JK, Hirschberg DJ (2002) $^{234}Th/^{238}U$ disequilibrium as an indicator of the seasonal export flux of particulate organic carbon in the North Water. Deep-Sea Res II 49:5191-5209 crossref(new window)

8.
Antoine D, Andre JM, Morel A (1996) Oceanic primary production, 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem Cycles 10(1):57-69 crossref(new window)

9.
Benitez-Nelson C, Buesseler KO, Karl DM, Andrews J (2001) A time-series study of particulate matter export in the North Pacific Subtropical Gyre based on $^{234}Th:^{238}U$ disequilibrium. Deep-Sea Res I 48:2595-2611 crossref(new window)

10.
Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am J Sci 282:451-473 crossref(new window)

11.
Canfield DE (1991) Sulfate reduction in deep-sea sediments. Am J Sci 291:177-188 crossref(new window)

12.
Canfield DE, Thamdrup B, Hansen JW (1993a) The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta 57:3867-3883 crossref(new window)

13.
Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993b) Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology 113:27-40 crossref(new window)

14.
Ferdelman TG, Fossing H, Neumann K, Schulz HD (1999) Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15${\circ}$38'S and 27${\circ}$57'S (Angola and Namibia). Limnol Oceanogr 44(3):650-661 crossref(new window)

15.
Fossing H, Jørgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochem 8:205-222

16.
Giuliani S, Radakovitch O, Frignani M, Bellucci LG (2007) Short time scale variations of $^{234}Th/^{238}U$ disequilibrium related to mesoscale variability on the continental slope of the Gulf of Lions (France). Mar Chem 106:403-418 crossref(new window)

17.
Gribsholt B, Kostka JE, Kristensen E (2003) Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Mar Ecol Prog Ser 259:237-251 crossref(new window)

18.
Hall POJ, Aller RC (1992) Rapid, small-volume, flow injection analysis for ${\Sigma}CO_{2}$ and $NH_{4}^{+}$ in marine and freshwaters. Limnol Oceanogr 37(5):1113-1119 crossref(new window)

19.
Hensen C, Zabel M, Schulz HN (2006) Benthic cycling of oxygen, nitrogen and phosphorus. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer-Verlag Berlin Heidelberg New York, pp 207-240

20.
Hung CC, Gong GC (2007) Export flux of POC in the main stream of the Kuroshio. Geophys Res Lett 34:1-6

21.
Hyun JH, Kim D, Shin CW, Noh JH, Yang EJ, Mok JS, Kim SH, Kim HC, Yoo S (2009a) Enhanced phytoplankton and bacterioplankton production coupled to coastal upwelling and an anticyclonic eddy in the Ulleung basin, East Sea. Aquat Microb Ecol 54:45-54

22.
Hyun JH, Mok JS, Cho HY, Kim SH, Lee KS, Kostka JE (2009b) Rapid organic matter mineralization coupled to iron cycling in intertidal mud flats of the Han River estuary, Yellow Sea. Biogeochem 92:231-245 crossref(new window)

23.
Hyun JH, Mok JS, You OR, Kim D, Choi DL (2010) Variations and controls of sulfate reduction in the continental slope and rise of the Ulleung Basin off the southeast Korean upwelling system in the East Sea. Geomicrobiol J 27:212-222 crossref(new window)

24.
Hyun JH, Smith AC, Kostka JE (2007) Relative contribution of sulfate- and iron(III) reduction to organic matter mineralization and process controls in contrasting habitats of the Georgia saltmarsh. Appl Geochem 22:2637-2651 crossref(new window)

25.
Jahnke RA, Jahnke DB (2000) Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter. Deep-Sea Res I 47:1405-1428 crossref(new window)

26.
Jahnke RA, Reimers CE, Craven DB (1990) Intensification of recycling of organic matter at the sea floor near ocean margins. Nature 348:50-54 crossref(new window)

27.
Jorgensen BB (1978) A comparison of methods for quantification of bacterial sulfate reduction in coastal marine sediments, I. Measurement with radiotracer techniques. Geomicrobiol J 1:11-27 crossref(new window)

28.
Jorgensen BB (1982) Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature 296:643-645 crossref(new window)

29.
Jorgensen BB (2006) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer-Verlag Berlin Heidelberg New York, pp 169-206

30.
Jorgensen BB, Kasten S (2006) Sulfur cycling and methane oxidation. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer-Verlag Berlin Heidelberg New York, pp 271-309

31.
Lee T, Hyun JH, Mok JS, Kim D (2008) Organic carbon accumulation and sulfate reduction rates in slope and basin sediments of the Ulleung Basin, East/Japan Sea. Geo Mar Lett 28:153-159 crossref(new window)

32.
Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54(6):1472-1480

33.
Moran SB, Kelly RP, Hagstrom K, Smith JN, Grebmeier JM, Cooper LW, Cota GF, Walsh JJ, Bates NR, Hansell DA, Maslowski W, Nelson RP, Mulsow S (2005) Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves. Deep-Sea Res II 52:3427-3451 crossref(new window)

34.
Moran SB, Weinstein SE, Edmonds HN, Smith JN, Kelly RP, Pilson MEQ, Harrison WG (2003) Does $^{234}Th/^{238}U$ disequilibrium provide an accurate record of the export flux of particulate organic carbon from the upper ocean? Limnol Oceanogr 48(3):1018-1029 crossref(new window)

35.
Park MH, Kim JH, Kim IS, Ryu BJ, Yu KM (2005) Tephrostratigraphy and paleo-environmental implications of Late Quaternary sediments and interstitial water in the western Ulleung Basin, East/Japan Sea. Geo Mar Lett 25:54-62 crossref(new window)

36.
Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press Oxford, 173 p

37.
Phillips EJP, Lovley DR (1987) Determination of Fe(III) and Fe(II) in oxalate extracts of sediment. Soil Sci Soc Am J 51:938-941 crossref(new window)

38.
Reimers CE, Jahnke RA, McCorkle DC (1992) Carbon fluxes and burial rates over the continental slope and rise off central California with implications for the global caron cycle. Global Biogeochem Cycles 6(2):199-224 crossref(new window)

39.
Stookey LL (1970) Ferrozine-a new spectrophotometric reagent for iron. Anal Chem 42(7):779-781 crossref(new window)

40.
Thamdrup B, Canfield DE (1996) Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41(8):1629-1650 crossref(new window)

41.
Thamdrup B, Canfield DE (2000) Benthic respiration in aquatic sediments. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer-Verlag Berlin Heidelberg New York, pp 86-103

42.
Thamdrup B, Dalsgaard T (2000) The fate of ammonium in anoxic manganese oxide-rich marine sediment. Geochim Cosmochim Acta 64(24):4157-4164 crossref(new window)

43.
Thamdrup B, Fossing H, Jorgensen BB (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 58(23):5115-5129 crossref(new window)

44.
Walsh JJ (1991) Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350:53-55 crossref(new window)

45.
Weber A, Riess W, Wenzhoefer F, Jorgensen BB (2001) Sulfate reduction in Black Sea sediments: in situ and laboratory radiotracer measurements from the shelf to 2000m depth. Deep-Sea Res I 48:2073-2096 crossref(new window)

46.
Wollast R (1991) The coastal organic carbon cycle: fluxes, sources, and sinks. In: Mantoura RFC, Martin JM, Wollast R (eds) Ocean margin processes in global change. John Wiley & Sons, pp 365-381

47.
Wollast R (1998) Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In: Brink KH, Robinson AR (eds) The Sea: The global coastal ocean: Processes and methods (Vol. 10). John Wiley & Sons, pp 213-252

48.
Wollast R (2002) Continental Margins-Review of geochemical settings. In: Wefer G, Billett D, Hebbeln D, Jorgensen BB, Schluter M, Van Weering T (eds) Ocean margin systems. Springer-Verlag Berlin Heidelberg New York, pp 15-31

49.
Yamada K, Ishizaka J, Nagata H (2005) Spatial and temporal variability of satellite primary production in the Japan Sea from 1998 to 2002. J Oceanogr 61:857-869 crossref(new window)