Advanced SearchSearch Tips
Antioxidant Activity of Flavonoids Isolated from Vitex rotundifolia
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 33, Issue 3,  2011, pp.255-263
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2011.33.3.255
 Title & Authors
Antioxidant Activity of Flavonoids Isolated from Vitex rotundifolia
Kim, You-Ah; Lee, Jung-Im; Hong, Joo-Wan; Jung, Myoung-Eun; Seo, Young-Wan;
  PDF(new window)
The aim of this investigation was to evaluate antioxidant activity of crude extracts from the halophyte Vitex rotundifolia, their solvent fractions, and isolated compounds (1-3). Antioxidant capacity was determined by measuring DPPH radical, and authentic and generated from 3- morpholinsydnonimine (SIN-1) in vitro as well as degree of occurrence of intracellular ROS, NO and GSH in mouse macrophage Raw 264.7 cells. From comparative analysis, MeOH extract, n-BuOH, and 85% aq. MeOH solvent fractions showed significant antioxidant effect in DPPH radical and assay systems. Activity-guided purification of n-BuOH and 85% aq. MeOH fractions led to the isolation of flavonoids 1-3. Among them, compound 1 exhibited excellent antioxidant effect in all bioassay systems tested. On the other hand, compounds 2 and 3 revealed potent inhibitory effect against generated from SIN-1, comparable with the positive control penicillamine.
Vitex rotundifolia;luteolin;vitexicarpin;artemetin;antioxidant activity;
 Cited by
Isolation of a New Labdane-type Diterpene from Vitex rotundifolia,Kim, You Ah;Kim, Da Seul;Oh, Kwang-Suk;Seo, Youngwan;

Bulletin of the Korean Chemical Society, 2013. vol.34. 12, pp.3840-3842 crossref(new window)
염생식물 순비기나무의 화학적 성분연구,김유아;김호준;오광석;서영완;

대한화학회지, 2014. vol.58. 6, pp.686-690 crossref(new window)
Chemical Constituents of the Halophyte Vitex rotundifolia, Journal of the Korean Chemical Society, 2014, 58, 6, 686  crossref(new windwow)
Isolation of a New Labdane-type Diterpene from Vitex rotundifolia, Bulletin of the Korean Chemical Society, 2013, 34, 12, 3840  crossref(new windwow)
Ahmad VU, Khan MA, Baqai FT, Tareen RB (1995) Santoflavone, a 5-Deoxyflavonoid from Achillea santolina. Phytochemistry 38:1305-1307 crossref(new window)

Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 90:7915-7922 crossref(new window)

Blois MS (1998) Antioxidant determinations by the use of a stable free radical. Nature 26:1199-1200

Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 22:749-760 crossref(new window)

Choi JK, Cha DS, Lee YJ, Ko SH, Park HJ, Lee SY, Choi JH, Jeon H (2010) Effects of Vitex rotundifolia on radical scavenging and nitric oxide production. Oriental Pharm Exp Med 10:51-58 crossref(new window)

Choi JS, Chung HY, Kang SS, Jung MJ, Kim JW, No JK, Jung HA (2002) The structure-activity relationship of flavonoids as scavengers of peroxynitrite. Phytother Res 16:232-235 crossref(new window)

Di Carlo G, Mascolo N, Izzo AA, Capasso F (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337-353 crossref(new window)

Green LC, Wagner DA, Logowski GJ, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131-138 crossref(new window)

Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203-210 crossref(new window)

Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572-584 crossref(new window)

Iinuma M, Matsuura S, Kusuda K (1980) $^{13}C$-nuclear magnetic resonance (NMR) spectral studies on polysubstituted flavonoids. I. $^{13}C$-NMR spectra of flavones. Chem Pharm Bull 28:708-716 crossref(new window)

Joo EY, Lee YS, Kim NW (2007) Polyphenol compound contents and physiological activities in various extracts of the Vitex rotundifolia stems. J Korean Soc Food Sci Nutr 36:813-818 crossref(new window)

Jung MJ, Chung HY, Choi JS (2001) Antioxidant activity of roasted defatted perilla seed. Nat Prod Sci 7:72-75

Kawazoe K, Yutani A, Takaishi Y (1999) Aryl naphthalenes norlignans from Vitex rotundifolia. Phytochemistry 52: 1657-1659 crossref(new window)

Kim YA, Lee JI, Kim H, Kong CS, Nam TJ, Seo Y (2009) Antiproliferative effect of extracts, fractions and compound from Vitex rotundifolia on Human Cancer Cells. J Appl Biol Chem 52:180-186 crossref(new window)

Kim DW (2009) Antioxidative Constituents from the Twigs of Vitex rotundifolia. Biomol Ther 17:412-417 crossref(new window)

Kirschvink N, de Moffarts B, Lekeux P (2008) The oxidant/antioxidant equilibrium in horses. Vet J 177:178-191 crossref(new window)

Ko WG, Kang TH, Lee SJ, Kim NY, Kim YC, Sohn DH, Lee BH (2000) Polymethoxyflavonoids from Vitex rotundifolia inhibit proliferation by inducing apoptosis in human myeloid leukemia cells. Food Chem Toxicol 38:861-865 crossref(new window)

Ko WG, Kang TH, Lee SJ, Kim YC, Lee BH (2001) Rotundifuran, a labdane type diterpene from Vitex rotundifolia, induces apoptosis in human myeloid leukaemia cells. Phytother Res 15:535-537 crossref(new window)

Kondo Y, Sugiyama K, Nozoe S (1986) Studies on the constituents of Vitex rotundifolia L. fil. Chem Pharm Bull 34:4829-4832 crossref(new window)

Kooy NW, Royall JA, Ischiropoulos H, Beckman JS (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 16:149-156 crossref(new window)

Lee YN (2002) In Flora of Korea. Kyo-Hak Publishing Co. Ltd., Seoul, 241 p

Liu YH, Lin SY, Lee CC, Hou WC (2008) Antioxidant and nitric oxide production inhibitory activities of galacturonyl hydroxamic acid. Food Chem 109:159-166 crossref(new window)

Loizzo MR, Said A, Tundis R, Rashed K, Statti GA, Hufner A, Menichini1 F (2007) Inhibition of Angiotensin Converting Enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytother Res 21:32-36 crossref(new window)

Okimoto Y, Watanabe A, Niki E, Yamashita T, Noguchi N (2000) A novel fluorescent probe diphenyl-1- pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett 474:137-140 crossref(new window)

Ono M, Ito Y, Kubo S, Nohara T (1997) Two new iridoids from Viticis trifoliae fructus (Fruit of Vitex rotundifolia L.). Chem Pharm Bull 45:1094-1096 crossref(new window)

Ono M, Ito Y, Nohara T (1998) A labdane diterpene glycoside from fruit of Vitex rotundifolia. Phytochemistry 48:207-209 crossref(new window)

Ono M, Yamamoto M, Masuoka C, Ito Y, Yamashita M, Nohara T (1999) Diterpenes from the Fruits of Vitex rotundifolia. J Nat Prod 62:1532-1537 crossref(new window)

Ono M, Sawamura H, Ito Y, Mizuki K, Nohara T (2000) Diterpenoids from the fruits of Vitex trifolia. Phytochemistry 55:873-877 crossref(new window)

Ono M, Ito Y, Nohara T (2001a) Four new halimane-type diterpenes, vitetrifolins D-G, from the fruit of Vitex trifolia. Chem Pharm Bull 49:1220-1222 crossref(new window)

Ono M, Yamamoto M, Yanaka T, Ito Y, Nohara T (2001b) Ten new labdane-type diterpenes from the fruit of Vitex rotundifolia. Chem Pharm Bull 49:82-86 crossref(new window)

Ono M, Yanaka T, Yamamoto M, Ito Y, Nohara T (2002) New diterpenes and norditerpenes from the fruits of Vitex rotundifolia. J Nat Prod 65:537-541 crossref(new window)

Park CM, Park JY, Song YS (2010) Luteolin and chicoric acid, two major constituents of dandelion Leaf, inhibit nitric oxide and lipid peroxide formation in lipopolysaccharide-stimulated RAW 264.7 cells. J Food Sci Nutr 15:92-97 crossref(new window)

Peterson J, Dwyer J (1998) Flavonoids: dietary occurrence and biochemical activity. Nutr Res 18:1995-2018 crossref(new window)

Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035-1042 crossref(new window)

Poot M, Verkerk A, Koster JF, Jongkind JF (1986) De novo synthesis of glutathione in human fibroblasts during in vitro ageing and in some metabolic diseases as measured by a flow cytometric method. Biochim Biophys Acta 883:580-584 crossref(new window)

Rahman AU, Ahmed D, Choudhary MI, Turkoz S, Sener B (1988) Chemical constituents of Buxus sempervirens. Planta Med 54:173-174 crossref(new window)

Shin TY, Kim SH, Lim JP, Suh ES, Jeong HJ, Kim BD, Park EJ, Hwang WJ, Rye DG, Baek SH, An NH, Kim HM (2000) Effect of Vitex rotundifolia on immediatetype allergic reaction. J Ethnopharmacol 72:443-450 crossref(new window)

Wang HY, Cai B, Cui CB, Zhang DY, Yang BF (2005) Vitexicarpin, a flavonoid from Vitex trifolia L., induces apoptosis in K562 cells via mitochondria-controlled apoptotic pathway. Yao Xue Xue Bao 40:27-31

Yeeh Y, Kang SS, Chung HG, Chung MS (1996) Genetic and clonal diversity in Korean populations of Vitex rotundifolia (Verbenaceae). J Plant Research 109:161-168 crossref(new window)

Yoshioka T, Inokuchi T, Fujioka S, Kimura Y. (2004) Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia. Z Naturforsch 59:509-514

You KM, Son KH, Chang HW, Kang SS, Kim HP (1998) Vitexicarpin, a flavonoid from the fruits of Vitex rotundifolia, inhibits mouse lymphocyte proliferation and growth of cell lines in vitro. Planta Med 64:546-550 crossref(new window)

Zhang S, Yang X, Coburn RA, Morris ME (2005) Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol 70:627-639 crossref(new window)