JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dune Migration on an Offshore Sand Ridge in the Southern Gyeonggi Bay, Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Ocean and Polar Research
  • Volume 35, Issue 1,  2013, pp.51-61
  • Publisher : Korea Institute of Ocean Science & Technology
  • DOI : 10.4217/OPR.2013.35.1.051
 Title & Authors
Dune Migration on an Offshore Sand Ridge in the Southern Gyeonggi Bay, Korea
Kum, Byung-Cheol; Shin, Dong-Hyeok;
  PDF(new window)
 Abstract
Two surveys were conducted in January 2006 and September 2007 with multibeam echosounder to investigate the dune shape, migration rate, and bedload transport rate using dune-tracking method on an offshore sand ridge at southern Gyeonggi Bay. The migration rates of dunes range from 1.8 ) to 56.0 ), at the upper northwestern side of sand ridge towards the southwest direction and from the center of the sand ridge towards the northeast direction respectively. Large (i.e. length 10-100 m) dunes show faster migration (0.3-23.4 ) ) than very large (i.e. length > 100 m) dunes because larger dunes have required a larger volume of sediments to be displaced. The decreases in dimensions and migration rates of dunes from the center of sand ridge to the lower part of southeastern side on the sand ridge can be ascribed to the decrease of sandy sediments availability, tidal currents with depth, and the coarsening of surface sediments from the crest of the sand ridge to the trough. Bedload transport rates on the basis of migration rates and dune dimensions decrease from 74.5 ) at C transect to 35.6 ) at R-02 transect.
 Keywords
multibeam echosounder;dune;migration rate;bedload transport rate;
 Language
Korean
 Cited by
1.
바다모래 채취 시 해수 수질 및 생태계 영향에 대한 해양환경조사 개선 방안,김영태;김귀영;전경암;엄기혁;김인철;최보람;김희정;김진민;

해양환경안전학회지, 2014. vol.20. 2, pp.143-156 crossref(new window)
2.
카메라를 활용한 조석사주 관측시스템 구축 및 지형변화,이숭지;이관홍;강태순;김영택;김태림;

한국마린엔지니어링학회지, 2015. vol.39. 3, pp.326-333 crossref(new window)
3.
천해 지질환경에서의 음파전달 특성 연구를 위한 KIOST-한양대 공동실험 개요,조성호;강돈혁;이철구;정섬규;최지웅;오선택;

한국음향학회지, 2015. vol.34. 6, pp.411-422 crossref(new window)
1.
Overview of the KIOST-HYU Joint Experiment for Acoustic Propagation in Shallow Water Geological Environment, The Journal of the Acoustical Society of Korea, 2015, 34, 6, 411  crossref(new windwow)
2.
Improvements in the Marine Environmental Survey on Impact of Seawater Qualities and Ecosystems due to Marine Sand Mining, Journal of the Korean Society of Marine Environment and Safety, 2014, 20, 2, 143  crossref(new windwow)
3.
Monitoring of Tidal Sand Shoal with a Camera Monitoring System and its Morphologic Change, Journal of the Korean Society of Marine Engineering, 2015, 39, 3, 326  crossref(new windwow)
 References
1.
국립해양조사원 (2006) 선갑도분근 연안해역 해저정보조사 결과보고서. 123 p

2.
금병철, 신동혁, 정섬규 , 이용국, 오재경 (2010a) 황해 경기만 남부해역에 발달된 층면구조의 형태적 특징과 제어요인. 한국지구과학회지 31(6):608-624

3.
금병철, 신동혁 , 정섬규 , 장석, 장남도 , 오재경 (2010b) 경기만 남부에 발달된 해저지형의 형태적 특징 및 해사채취에 의한 변화. Ocean and Polar Res 32(4):337-350 crossref(new window)

4.
김태희, 오희진, 윤용훈 (2004) 경기만 주변 해역의 국지파랑 관측자료 비교. 한국기상학회지 40(4):485-495

5.
박문진 (2008) 화옹(남양만) 방조제에 따른 아산만의 조석변화. 한국해양학회지 바다 13(4):320-324

6.
박준석 (2007) HEM-3D 수치모델을 이용한 경기만 남부지역의 지형변화 양상. 이학석사 학위논문, 인하대학교 59 p

7.
방효기, 이치원, 오재경 (1994a) 한반도 서부대륙붕에 발달한 사퇴의 발생기원과 특성. 한국해양학회지 29(3):217-227

8.
방효기, 이호영, 장정해, 이치원, 오재경 (1994b). 경기만에 발달한 조류성사퇴의 역사 및 특성. 한국해양학회지 29(3): 278-286

9.
손규희, 한경남 (2007) 경기만의 해사채취에 의한 생물군집 구조변경 . Ocean and Polar Res 29(3):205-216 crossref(new window)

10.
오재경, 방기영 (2003) 한강 유역과 경기만 퇴적환경의 연계 성. 한국해양학회지 바다 8(3):222-236

11.
유옥환, 이형곤, 이재학, 김동성 (2006) 경기만에서 해사채취 가 대형저서동물 군집구조에 미치는 영향. Ocean and Polar Res 28(2):129-144 crossref(new window)

12.
장태수, 민건홍, 서영교, 하헌준, 백건하 (2012) 다중빔 음향 측심기를 이용한 해저수중사구의 층면구조 분석 : 어청도 서부해역. 한국수로학회지 1(1):57-65

13.
최동림, 김성렬, 석봉출 , 한상준 (1992) 한반도 황해 중부 태 안반도 근해 사질퇴적물의 이동 . 한국해양학회지 27(1): 66-77

14.
환경부 (1999) 해양 환경감시 및 평가기술 -해저층 퇴적물 이동 관측 및 예측기술. 한국해양연구원, BSPN9633800-1000-5, 359 p

15.
해양수산부 (2007) 해사채취의 친환경적 관리방안 연구 (III). 한국해양수산개발원 , GOVP1200810214, 1174 p

16.
Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Petrol 60(1):160-172 crossref(new window)

17.
Baas JH (1994) A flume study on the development and equilibrium morphology of current ripples in very fine sand. Sedimentology 41(2):185-209 crossref(new window)

18.
Baas JH (1999) An empirical model for the development and equilibrium morphology of current ripples in fine sand. Sedimentology 46(1):123-138 crossref(new window)

19.
Bartholdy J, Bartholomae A, Flemming BW (2002) Grain-size control of large compound flow-transverse bedforms in a tidal inlet of the Danish Wadden Sea. Mar Geol 188(3-4):391-413 crossref(new window)

20.
Besio G, Blondeaux P, Brocchini M, Vittori G (2004) On the modeling of sand wave migration. J Geophy Res 109(C4): C04018. doi:10.1029/2002JC001622 crossref(new window)

21.
Buijsman MC, Ridderinkhof HO (2008) Long-term evolution of sand waves in the marsdiep inlet. II: Relation to hydrodynamics. Continental Shelf Res 28(9):1202-1215 crossref(new window)

22.
Chang TS, Kim SP, Yoo DG, Lee SJ, Lee EI (2010) A large mid-channel sand bar in the marcrotidal seaway of Asan Bay, Korea; 30 years of morphologic response to anthropogenic impacts. Geo-Mar Lett 30:15-22 crossref(new window)

23.
Chough SK (1983) Marine geology of Korean Seas. Internation Human Resources Developement Coopration, Boston, 157 p

24.
Chu YS (2000) Sediment dynamics and maintenance processes of linear tidal sand body; Jangan sandbank in the central west coast of Korea. Ph.D. Thesis, Seoul National University, 240 p

25.
Ernstsen VB, Noormets R, Winter C, Hebbeln D (2005) Development of subaqueous barchanoid-shaped dunes due to lateral grain size vaiability in a tidal inlet channel of the Danish Wadden Sea. J Geophy Res 110(F4): F04S08. doi:10.1029/2004JF000180 crossref(new window)

26.
Ernstsen VB, Noormets R, Winter C, Hebbeln D, Bartholom A, Flemming BW, Barholdy J (2006) Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo-Mar Lett 26(3):151-163. crossref(new window)

27.
Flemming BW (2000) The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes. In: Marine Sandwave Dynamics, Proceeding of an International Workshop, Lille, France, 23 and 24 March 2000, pp 240

28.
Glenn SM, Grant WD (1987) A suspended sediment stratification correction for combined wave and current flows. J Geophys Res 92(C8):8244-8264 crossref(new window)

29.
Hoekstra P, Bell P, Van Santen P, Roode N, Levoy F, Whitehous R (2004) Bedform migration and bedload transport on an intertidal shoal. Cont Shelf Res 24(11): 1249-1269 crossref(new window)

30.
Jung WY, Suk BC, Min GH, Lee YK (1998) Sedimentary structure and origin of a mud-cored pseudo-tidal sand ridge, eastern Yellow Sea, Korea. Mar Geol 151(1-4):73- 88 crossref(new window)

31.
Knappen MAF (2005) Sandwave migration predictor based on shape information. J Geophy Res 110(F4):F04S11. doi:10.1029/2004JF000195 crossref(new window)

32.
Knappen MAF, Van Bergen Henegouw CN, Hu YY (2005) Quantifying bedform migration using multi-beam sonar. Geo-Mar Lett 25(5):306-314 crossref(new window)

33.
Kubicki A (2008) Large and very large subaqueous dunes on the continental shelf off southern Vietnam, South China Sea. Geo-Mar Lett 28(4):229-238 crossref(new window)

34.
Lee HJ, Yoon SH (1997) Development of stratigraphy and sediment distribution in the northeastern Yellow Sea during Holocene sea-level rise. J Sediment Res 67(2): 341-349

35.
Lee HJ, Lee S (2011) Sand Transport offshore the Saemangeum Dike, Midwest Coast of Korea. J Coastal Res 27(1):153- 165 crossref(new window)

36.
Lobo FJ, Hernndez-Molina FJ, Somoza L, Rodero J, Maldonado A, Barnolas A (2000) Patterns of bottom current flow deduced from dune asymmetries over the Gulf of Cadiz shelf (southwest Spain). Mar Geol 164(3): 91-117 crossref(new window)

37.
McCave IN, Langhorne DN (1982) Sand waves and sediment transport around the end of a tidal sand bank. Sedimentology 29(1):95-110 crossref(new window)

38.
Stride AH (1963) Current swept sea floors near the southern half of Great Britain. Q J Geol Soc Lond 119(1-4):175- 197 crossref(new window)

39.
Van den Berg JH (1987) Bedform migration and bed-load transport in some rivers and tidal environments. Sedimentology 34(4):681-698 crossref(new window)

40.
Van Dijk TAGP, Kleinhans MG (2005) Porcesses controlling the dynamics of compound sand waves in the North Sea, Netherlands. J Geophys Res 110(F4):F04S10. doi:10.1029/2004JF000173 crossref(new window)

41.
Van Landeghem KJJ, Wheeler AJ, Mitchell N, Sutton G (2009) Variations in sediment wave dimensions across the tidally dominated Irish Sea, NW Europe. Mar Geol 263(1-4):108-119 crossref(new window)

42.
Van Landeghem KJJ, Baas JH, Mitchell NC, Wilcockson D, Wheeler AJ (2012) Reversed sediment wave migration in the Irish Sea, NW Europe: A reappraisal of the validity of geometry-based predictive modelling and assumptions. Mar Geol 295-298:95-112 crossref(new window)

43.
Van Rijn LC (1984) Sediment transport, Part I: bedload transport. J Hydraul Eng 110(10):1431-1456 crossref(new window)

44.
Venditti JG, Church M, Bennet SJ (2005) On the transition between 2D and 3D dunes. Sedimentology 52(6):1343- 1359 crossref(new window)

45.
Wienberg C, Hebbln D (2005) Impact of dumped sediments on subaqueous dunes, outer Weser Estuary, German Bight, southeastern North Sea. Geo-Mar Lett 25(1):43-53

46.
Xu JP, Wong FL, Kvitdk R, Smith DP, Paull CK (2008) Sandwave migration in Monterey Submarine Canyon, Central California. Mar Geol 248(3-4):193-212 crossref(new window)