Advanced SearchSearch Tips
Investigation of Turbulence Characteristics of Defect Law Region over Flat plate
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Investigation of Turbulence Characteristics of Defect Law Region over Flat plate
Suh, Sung-Bu; Park, Il-Ryong; Jung, Kwang-Hyo; Lim, Jung-Gwan; Kim, Kwang-Soo; Kim, Jin;
  PDF(new window)
To investigate the turbulence characteristics within the boundary layer over a flat plate, an experimental study was performed using a PIV technique in a circular water channel. For two water velocities, 0.92 and 1.99 m/s, the water velocity profiles were taken and analyzed to determine turbulent characteristics such as the Reynolds stress, Taylor micro-length scale, and Kolmogorov length scale within the defect law region of the boundary layer. These analysis methods may be applied to research on the friction drag reduction technology using micro-bubbles or an air sheet over the surface of a ship's hull, because the physical reason for the friction drag reduction could be found by understanding the variation of the turbulence characteristics and structures in the boundary layer.
Turbulent boundary layer;Particle image velocimetry;Reynolds stress;Taylor micro length scale;Kolmogorov length scale;
 Cited by
An, S.M., Ahn, H.T., 2011. Feasibility Study About Friction Drag Reduction Using Partial Air Cavity. School of Naval Architecture & Ocean Engineering, University of Ulsan, 535-540.

Clauser, F.H., 1954. Turbulent Boundary Layers in Adverse pressure Gradients. Journal of the Aeronautical Sciences, 21(2), 91-108. crossref(new window)

Crimaldi, J.P., 1998. Turbulence Structure of Velocity and Scalar Fields Over a Bed of Model Bivalves. Stanford University.

Jacob, B., Olivieri, A., Miozzi, M., Campana, E.F., Piva, R., 2010. Drag Reduction by Microbubbles in a Turbulent Boundary Layer. Physics of Fluids, 22(115104), 1-10.

Kim, D.S., Kim, H.T., Kim, W.J., 2003. Experimental Study of Friction Drag Reduction in Turbulent Flow with Microbubble Injection. Journal of Society of Naval Architects of Korea, 40(3), 1-8. crossref(new window)

Kwon, S.H., Yoon, S.Y., Kim, K.C., 2004. Experimental Study on the Three-Dimensional Topology of Hairpin Packet Structures in Turbulent Boundary Layers. Journal of the Korean Society of Mechanical Engineers, 28(7), 834-841. crossref(new window)

Latorre, R., Miller, A., Philips, R., 2003. Micro-bubble Resistance Reduction on a Model SES Catamaran. Ocean Engineering, 30, 2297-2309. crossref(new window)

Lewis, E.V., 1988. Principles of Naval Architecture Second Revision, Volume II., The Society of Naval Architects and Marine Engineers, New Jersey.

Nagamatsu, T., Kodama, T., Kakugawa, A., Takai, M., Murakami, K., Ishikawa, K., Kamirisa, H., Ogiwara, S., Yoshida, Y., Suzuki, T., Toda, Y., Kato, H., Ikemoto, A., Yamatani, S., Imo, S., Yamashita, K., 2002. A Full-scale Experiment on Microbubbles for Skin Friction Reduction using SEIUN MARU - Part 2: The Full-scale experiment. Journal of the Society of Naval Architects of Japan, 192, 15-28.

Paik, B.G., Kim, K.R., Kim, J.H., Kim, K.S., Ahn, J.W., Kim, K.S., 2013. Skin Friction Measurement and Its Analysis Using Flow Visualization Techniques. Journal of Ships & Ocean Engineering, 53, 19-26.

Paik, B.G., Pyun, Y.S., Kim, J.H., Kim, K.Y., Kim, K.S., Jung, C.M., Kim, C.K., 2012. Study on the Drag Reduction of 2-D Dimpled-Plates. Journal of Society of Naval Architects of Korea, 49(4), 333-339. crossref(new window)

Park, H., An, N.H., Park, S.H., Chun, H.H., Lee, I.W., 2010. PIV Investigation on the kin Friction Reduction Mechanism of Outer-layer Vertical Blades. Journal of the Korean Society of Visualization, 9(1), 20-28. crossref(new window)

Pope, S.B., 2000. Turbulent Flows. Cambridge University Press, Cambridge.

Raffel, M., Willert, C.E., Kompenhans, J., 1998. Particle Image Velocimetry. Springer-Verlag, Berlin.

Schilichting, H., Gersten, K., 2000. Boundary Layer Theory. Springer.