Advanced SearchSearch Tips
Design of High Speed Tensile Test Machine for Flow Stress under Intermediate Strain Rate Condition
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Design of High Speed Tensile Test Machine for Flow Stress under Intermediate Strain Rate Condition
Choung, Joonmo; Yoon, Sung-Won; Park, Sung-Ju; Kim, Younghun;
  PDF(new window)
A hydraulic tensile test machine (HSTM) is one of the devices used to obtain the flow stress of a material during high-speed elongation. This paper first describes some features of a newly built HSTM. The improvement histories of the upper and lower jigs, which are the most vital parts of the HSTM, are also presented. We have frequently witnessed test failures with 1st generation jigs and specimens due to slip between the jig and specimen. 2nd generation jigs provide more stable test results, but the use of a longer upper jig induces excessive vibration and consequently makes it difficult to attach an environment chamber. 3rd generation jigs have some advances in terms of the symmetric fastening between the upper jig and specimen, as well as an exemption from direct contact between the lower jig and specimen. The performance of an environment chamber is verified by high and low temperature tests. A high-speed displacement measurement system is introduced based on a high-speed camera and motion-tracking software with aid of a surface grid device for the specimen.
High speed tensile test machine;Intermediate strain rate;Flow stress;Ringing;Piezoelectric load cell;Jig;High speed camera;Environment chamber;
 Cited by
심해저용 전기 저항 용접 소구경 송유관 소재의 온도 및 변형률 속도 에 따른 유동 응력 특성,김영훈;박성주;윤성원;정준모;

한국해양공학회지, 2015. vol.29. 3, pp.241-248 crossref(new window)
쇄빙선 강재의 내충격 특성에 관한 실험적 연구: 제1부 강재 특성,노명현;이재익;박성주;정준모;

한국해양공학회지, 2016. vol.30. 4, pp.268-276 crossref(new window)
Study on Crashworthiness of Icebreaker Steel: Part I Steel Properties, Journal of Ocean Engineering and Technology, 2016, 30, 4, 268  crossref(new windwow)
American Society of Materials International (ASM), 2000. ASM Handbook Volume 8 Mechanical Testing and Evaluation. ASM.

Cadoni, E. Fenu, L., Forni, D., 2012. Strain Rate Behavior in Tension of Austenitic Stainless Steel Used for Reinforcing Bars. Construction and Building Materials, 35, 399-407. crossref(new window)

Choung, J., Cho, S.R., Kim, K.S., 2010. Impact Test Simulations of Stiffened Plates Using the Micromechanical Porous Plasticity Model. Ocean Engineering, 37, 749-756. crossref(new window)

Choung, J., Shim, C.S., Kim, K.S., 2011. Plasticity and Fracture Behaviors of a Marine Structural Steel Part I: Theoretical Backgrounds of Strain Hardening and Rate Hardening. Journal of Ocean Engineering and Technology, 25(2), 134-144. crossref(new window)

European Commission, 2012. ATEX GUIDELINES 4th Edition.

Fitoussi, J., Meraghni, F., Jendli, Z., Hug, G., Baptiste, D., 2005. Experimental Methodology for High Strain-rates Tensile Behavior Analysis of Polymer Matrix Composites. Composites Science and Technology, 65, 2174-2188. crossref(new window)

Othman, R., Guegan, P., Challota, G., Pasco, F., LeBreton, D., 2009. A Modified Servo-hydraulic Machine for Testing at Intermediate Strain Rates. International Journal of Impact Engineering, 36, 460-467. crossref(new window)

Raisch, S.R., Moginger, B., 2010. High Rate Tensile Tests - Measuring Equipment and Evaluation. Polymer Testing, 29, 265-272. crossref(new window)

Schobig, M., Bierogel, C., Grellmann, W., Mecklenburg, T., 2008. Mechanical Behavior of Glass-fiber Reinforced Thermoplastic Materials under High Strain Rates. Polymer Testing, 27, 893-900. crossref(new window)

Shim, J.M., Mohr, D., 2009. Using Split Hopkinson Pressure Bars to Perform Large Strain Compression Tests on Polyurea at Low, Intermediate and High Strain Rates. International Journal of Impact Engineering, 36, 1116-1127. crossref(new window)

Silva, F., Zhu, D., Mobasher, B., Soranakom, C., Filho, R.D.T., 2010. High Speed Tensile Behavior of Sisal Fiber Cement Composites. Materials Science and Engineering A, 527, 544-552. crossref(new window)

Simulia, 2008. Abaqus User's Manual Version 6.8.

Song, B., Chen, W.W., Lu, W.Y., 2007. Mechanical Characterization at Intermediate Strain Rates for Rate Effects on an Epoxy Syntactic Foam. International Journal of Mechanical Sciences, 49, 1336-1343. crossref(new window)

Zhu, D., Rajan, S.D., Mobasher, B., Peled, A., 2010. Modal Analysis of a Servo-Hydraulic High Speed Machine and its Application to Dynamic Tensile Testing at an Intermediate Strain Rate. Experimental Mechanics, 51(8), 1347-1363.

Zhu, D., Mobasher, B., Rajan, S.D., Peraita, P., 2011. Characterization of Dynamic Tensile Testing Using Aluminum Alloy 6061-T6 at Intermediate Strain Rates. Journal of Engineering Mechanics, 137, 669-679. crossref(new window)

Zrida, M., Laurent, H., Grolleau, V., Rio, G., Khlif, M., Guines, D., Masmoudi, N., Bradai, C., 2010. High-speed Tensile Tests on a Polypropylene Material. Polymer Testing, 29, 685-692. crossref(new window)