JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Redundant Architectural Design of Hydraulic Control System for Reliability Improvement of Underwater Construction Robot
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Redundant Architectural Design of Hydraulic Control System for Reliability Improvement of Underwater Construction Robot
Lee, Jung-Woo; Park, Jeong-Woo; Suh, Jin-Ho; Choi, Young-Ho;
  PDF(new window)
 Abstract
In the development of an underwater construction robot, the reliability of the operating system is the most important issue because of its huge maintenance cost, especially in a deep sea application. In this paper, we propose a new redundant architectural design for the hydraulic control system of an underwater construction robot. The proposed architecture consists of dual independent modular redundancy management systems linked with a commercial profibus network. A cold standby redundancy management system consisting of a preprocessing switch circuit is applied to the signal network, and a hot standby redundancy management system is adapted to utilize two main controllers.
 Keywords
Redundancy design;Standby redundancy;Profibus DP;Hydraulic control;Underwater construction robot;
 Language
Korean
 Cited by
 References
1.
Gohil, S., Basavalingarajaiah, A., Ramachandran, V., 2011. Redundancy Management and Synchronization in Avionics Communication Products. Proceedings of Integrated Communications, Navigation and Surveillance Conference, C3-1-C3-8.

2.
Jang, I.S., Min, J.T., Do, H.J., Kim, M.J., 2014. Development Trends of Underwater Construction Robotics and R&D Strategies for Practical Use. Proceedings of the Annual Autumn Meeting of the Society of Unmanned Underwater Vehicle of Korea, 55-58.

3.
Lee, J.W., Park, J.W., Choi, Y.H., Suh, J.H., Kim, J.G., Lee, J.D., 2014. Load Prediction using Simultaneous Evaluation and Decision Method on the Track-based Underwater Robot Platform. Proceedings of the Annual Autumn Meeting of the Society of Unmanned Underwater Vehicle of Korea, 73-77.

4.
Moreno, J.C., Laloya, E.J., Navarro, J., 2006. Line Redundancy in MVB-TCN Devices: A Control Unit Design. Proceedings of Electrotechnical Conference, 789-794.

5.
Singh, S., Chary, V.M., Rahman, P.A., 2014. Dual Redundant Profibus Network Architecture in Hot Standby Fault Tolerant Control Systems. Proceedings of Advances in Engineering and Technology Research, 1-5.