JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Development of the Global Tsunami Prediction System using the Finite Fault Model and the Cyclic Boundary Condition
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of the Global Tsunami Prediction System using the Finite Fault Model and the Cyclic Boundary Condition
Lee, Jun-Whan; Park, Eun Hee; Park, Sun-Cheon; Woo, Seung-Buhm;
  PDF(new window)
 Abstract
A global tsunami prediction system was suggested for a distant tsunami using a finite fault model and a cyclic boundary condition. The possibility of the suggested system as a distant tsunami response system was checked by applying it into the case of 2014 Chile tsunami. A comparison between the numerical results(tsunami height and arrival time) with different conditions (boundary condition, governing equation, grid size and fault model) and measured data (DART buoy, tide station) showed the importance of the finite fault model and the cyclic boundary condition.
 Keywords
finite fault model;cyclic boundary condition;2014 Chile tsuanmi;wave height;arrival time;
 Language
Korean
 Cited by
1.
지형효과를 이용한 한반도에서 관측된 2011년 동일본 지진해일 선행파 수치모의,이준환;박은희;박순천;이덕기;이종호;

한국해안해양공학회논문집, 2016. vol.28. 5, pp.265-276 crossref(new window)
1.
Numerical Simulations of the 2011 Tohoku, Japan Tsunami Forerunner Observed in Korea using the Bathymetry Effect, Journal of Korean Society of Coastal and Ocean Engineers, 2016, 28, 5, 265  crossref(new windwow)
 References
1.
An, C., Seplveda, I. and Liu, P.L.F. (2014). Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Research Letters, 41(11), 3988-3994. crossref(new window)

2.
Bae, J.S., Cho, Y.J., Kwon, S.J. and Yoon, S.B. (2012). Numerical analyses of 2011 East Japan Tsunami propagation towards Korean peninsula. Journal of Korean Society of Coastal and Ocean Engineers. 24(1), 66-76 (in Korean). crossref(new window)

3.
Bae, J.S. and Yoon, S.B. (2010). Construction of tsunami inundation map for real-time quantitative response. Journal of Korean Society of Coastal and Ocean Engineers. 22(5), 287-294 (in Korean).

4.
Chen, C., Lai, Z., Beardsley, R.C., Sasaki, J., Lin, J., Lin, H., Ji, R. and Sun, Y. (2014). The March 11, 2011 Thoku M9.0 earthquake-induced tsunami and coastal inundation along the Japanese coast: A model assessment. Progress in Oceanography, 123, 84-104. crossref(new window)

5.
Cho, Y.-S. (1995). Numerical simulations of tsunami propagation and run-up. Ph.D. dissertation, Cornell University, USA.

6.
Cho, Y.-S. and Ha, T. (2010). Characteristics of tsunamis and mitigation planning. Journal of Korean Society of Earth and Exploration Geophysicists. 13(3), 295-300 (in Korean).

7.
Cho, Y.-S., Sohn, D.H. and Lee, S.O. (2007). Practical modified scheme of linear shallow-water equations for distant propagation of tsunamis. Ocean Engineering, 34(11), 1769-1777. crossref(new window)

8.
Cho, Y.-S. and Suh, S.-W. (2001). Estimation of maximum inundation zone due to tsunamis with moving boundary. Journal of Korean Society of Coastal and Ocean Engineers. 13(2), 100-108 (in Korean).

9.
Cushman-Roisin, B. and Beckers, J.-M. (2011). Introduction to geophysical fluid dynamics: physical and numerical aspects. Academic Press, 101.

10.
Dao, M.H. and Tkalich, P. (2007). Tsunami propagation modelling - a sensitivity study. Natural Hazards and Earth System Science, 7(6), 741-754. crossref(new window)

11.
Dutykh, D. and Dias, F. (2009). Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting. Mathematics and Computers in Simulation, 80(4), 837-848. crossref(new window)

12.
Fritz, H.M., Petroff, C.M., Cataln, P.A., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S.E., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadopoulos, A., Contreras, M., Almar, R., Dominguez, J.C. and Synolakis, C.E. (2011). Field survey of the 27 February 2010 Chile tsunami. Pure and Applied Geophysics, 168(11), 1989-2010. crossref(new window)

13.
Glimsdal, S., Pedersen, G.K., Harbitz, C.B. and Lovholt, F. (2013). Dispersion of tsunamis: does it really matter. Natural Hazards and Earth System Sciences, 13, 1507-1526. crossref(new window)

14.
Gusman, A.R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., and Schurr, B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophysical Research Letters, 42(4), 1053-1060. crossref(new window)

15.
Ha, T. and Cho, Y.-S. (2015). Tsunami propagation over varying water depths. Ocean Engineering. 101, 67-77. crossref(new window)

16.
Ha, T.-M., Cho, Y.-S., Choi, B.-H. and Kim, S.-M. (2007). Field survey of 2004 Sumatra-Andaman Tsunami: Andaman and Nicobar Islands. Journal of Korean Society of Coastal and Ocean Engineers. 19(1), 97-103 (in Korean).

17.
Hayes, G.P., Herman, M.W., Barnhart, W.D., Furlong, K.P., Riquelme, S., Benz, H.M., Bergman, E., Barrientos, S., Earle, P.S. and Samsonov, S. (2014). Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature, 512(7514), 295-298. crossref(new window)

18.
Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A.R., and Watada, S. (2014). Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 Mw 8.2 Iquique, Chile Earthquake. Pure and Applied Geophysics, 172(3-4), 719-730.

19.
Imai, K., Satake, K. and Furumura, T. (2010). Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough. Earth, Planets and Space, 62(4), 427-432. crossref(new window)

20.
Imamura, F., Shuto, N. and Goto, C. (1988). Numerical simulations of the transoceanic propagation of tsunamis. Proceeding of 6th Congress Asian and Pacific Regional Division, IAHR, Japan, 265-272.

21.
Jeffreys, H. and Bullen, K.E. (1958). Seismological tables. Office of the British Association.

22.
Kamigaichi, O. (2009). Tsunami forecasting and warning. In Encyclopedia of Complexity and Systems Science, Springer New York, 9592-9618.

23.
Kikuchi, M. and Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2), 491-506.

24.
Kikuchi, M. and Kanamori, H. (1986). Inversion of complex body waves-II. Physics of the Earth and Planetary Interiors, 43(3), 205-222. crossref(new window)

25.
Kikuchi, M. and Kanamori, H. (1991). Inversion of complex body waves-III. Bulletin of the Seismological Society of America, 81(6), 2335-2350.

26.
Kim, D.-S., Kim, J.-M. and Lee, K.-H. (2007a). Numerical simulation of tsunamis that affected the coastal zone of East Sea. Journal of Korean Society of Coastal and Ocean Engineers, 21(6), 72-80 (in Korean).

27.
Kim, D.-S., Kim, J.-M., Lee, K.-H. and Son, B.-K. (2007b). Analysis of the effects on the southeastern coast of Korea by a tsunami originating from hypothetical earthquake in Japan. Journal of Korean Society of Coastal and Ocean Engineers, 21(6), 64-71 (in Korean).

28.
Kim, J.H., Choi, W.H., Bae, J.S. and Yoon, S.B. (2008). Propagation characteristics of potential tsunamis in Okinawa trough. Journal of Korean Society of Coastal and Ocean Engineers, 20(3), 268-276 (in Korean).

29.
Kirby, J.T., Shi, F., Tehranirad, B., Harris, J.C. and Grilli, S.T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling, 62, 39-55. crossref(new window)

30.
Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., Fujii, Y., Miyake, H., Sakai, S., Yamanaka, Y. and Okada, T. (2011). A unified source model for the 2011 Tohoku earthquake. Earth and Planetary Science Letters, 310, 480-487. crossref(new window)

31.
Kowalik, Z., Knight, W., Logan, T. and Whitmore, P. (2005). Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004. Science of Tsunami Hazards, 23(1), 40-56.

32.
Kowalik, Z., Knight, W., Logan, T. and Whitmore, P. (2007). The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure and Applied Geophysics, 164, 1-15. crossref(new window)

33.
Lee, D.K., Ryoo, Y., Yang, J., Kim, S., Youn, Y., Lee, J.H. and Park, J. (2005). A way for establishing tsunami scenario data base. Journal of Korean Society of Earth and Exploration Geophysicists, 8(2), 93-96 (in Korean).

34.
Lee, K.H., Kim, M.J., Kawasaki, K., Cho, S. and Kim D.S. (2012). Effects on the Jeju Island of tsunamis caused by triple interlocked Tokai, Tonankai, Nankai Earthquakes in Pacific Coast of Japan. Journal of Korean Society of Coastal and Ocean Engineers, 24(4), 295-304 (in Korean). crossref(new window)

35.
Lima, V.V., Miranda, J.M., Baptista, M.A., Catalao, J., Gonzalez Rodriguez, E.M., Otero, L., Olabarrieta, J.A. and Carreo Herrero, E. (2010). Impact of a 1755-like tsunami in Huelva, Spain. Natural Hazards and Earth System Science, 10(1), 139-148. crossref(new window)

36.
Lin, S.C., Wu, T.R., Yen, E., Chen, H.Y., Hsu, J., Tsai, Y.L., Lee, C.-J. and Liu, P.L.F. (2015). Development of a tsunami early warning system for the South China Sea. Ocean Engineering, 100, 1-18. crossref(new window)

37.
Liu, P.L., Woo, S.B. and Cho, Y.S. (1998). Computer programs for tsunami propagation and inundation. Cornell University.

38.
Lovholt, F., Pedersen, G. and Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research: Oceans (1978-2012), 113(C9), doi:10.1029/2007JC004603. crossref(new window)

39.
Megawati, K., Shaw, F., Sieh, K., Huang, Z., Wu, T.R., Lin, Y., Tan, S.K. and Pan, T.-C. (2009). Tsunami hazard from the subduction megathrust of the South China Sea: Part I. source characterization and the resulting tsunami. Journal of Asian Earth Sciences, 36(1), 13-20. crossref(new window)

40.
Meinig, C., Stalin, S.E., Nakamura, A.I. and Milburn, H.B. (2005). Real-time deep-ocean tsunami measuring, monitoring, and reporting system: The NOAA DART II description and disclosure. NOAA Pacific Marine Environmental Laboratory (PMEL), Tech. Rep.

41.
Melgar, D. and Bock, Y. (2015). Kinematic Earthquake Source Inversion and Tsunami Runup Prediction with Regional Geophysical Data. Journal of Geophysical Research: Solid Earth, 120(5), 3324-3349. crossref(new window)

42.
Miyoshi, T., Saito, T., Inazu, D. and Tanaka, S. (2015). Tsunami modeling from the seismic CMT solution considering the dispersive effect: a case of the 2013 Santa Cruz Islands tsunami. Earth, Planets and Space, 67(1), 1-7. crossref(new window)

43.
Mori, N., Takahashi, T., Yasuda, T. and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and runup. Geophysical Research Letters, 38, L00G14, doi:10.1029/2011GL049210. crossref(new window)

44.
Murotani, S., Iwai, M., Satake, K., Shevchenko, G. and Loskutov, A. (2014). Tsunami forerunner of the 2011 Tohoku Earthquake observed in the Sea of Japan. Pure and Applied Geophysics, 1-15.

45.
National Oceanic and Atmospheric Administration (2005) Deep-Ocean Assessment and Reporting of Tsunamis (DART(R)). National Geophysical Data Center, NOAA. doi:10.7289/V5F18WNS. crossref(new window)

46.
Ohmachi, T., Tsukiyama, H. and Matsumoto, H. (2001). Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting. Bulletin of the Seismological Society of America, 91(6), 1898-1909. crossref(new window)

47.
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135-1154.

48.
Park, K.-W. and Cho, Y.-S. (2012). Hazard map with probable maximum tsunamis. Journal of Korean Society of Hazard Mitigation, 12(2), 263-270 (in Korean).

49.
Park, S.-C. and Lee, J.-W. (2014). Fundamental research for improvement of tsunami warning system of KMA. Proceedings of Earthquake Engineering Society of Korea Conference 2014, 85-86 (in Korean).

50.
Pawlowicz, R., Beardsley, B. and Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929-937. crossref(new window)

51.
Purser, R.J. (1988). Accurate numerical differencing near a polar singularity of a skipped grid. Monthly weather review, 116(5), 1067-1076. crossref(new window)

52.
Saito, T. and Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877-888. crossref(new window)

53.
Shevchenko, G., Ivelskaya, T. and Loskutov, A. (2014). Characteristics of the 2011 Great Tohoku tsunami on the Russian Far East coast: Deep-water and coastal observations. Pure and Applied Geophysics, 171(12), 3329-3350. crossref(new window)

54.
Shuto, N., Suzuki, T. and Hasegawa, K. (1986). A study of numerical techniques on the tsunami propagation and run-up. Science of Tsunami Hazard, 4, 111-124.

55.
Sim, J.-Y., Ha, T.-M. and Cho, Y.-S. (2009). Relationship between maximum wave heights of tsunamis and earthquake parameters. Journal of Korean Society of Hazard Mitigation, 9(3), 135-142 (in Korean).

56.
Suppasri, A., Imamura, F. and Koshimura, S. (2010). Effects of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami. Coastal Engineering Journal, 52(2), 107-132. crossref(new window)

57.
Tatehata, H. (1998). The new tsunami warning system of the Japan Meteorological Agency. Science of Tsunami Hazards, 16(1), 39-49.

58.
Titov, V., Gonzalez, F., Bernard, E., Eble, M., Mofjeld, H., Newman, J. and Venturato, A. (2005). Real-Time Tsunami Forecasting:Challenges and Solutions. Natural Hazards, 35(1), 35-41. crossref(new window)

59.
Tsushima, H., Hino, R., Tanioka, Y., Imamura, F. and Fujimoto, H. (2012). Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting. Journal of Geophysical Research: Solid Earth (1978-2012), 117(B03311), doi:10.1029/2011JB008877. crossref(new window)

60.
Wang, X. (2008). Numerical modelling of surface and internal waves over shallow and intermediate water. Ph.D. dissertation, Cornell University, USA.

61.
Wang, X. and Liu, P.L.F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147-154. crossref(new window)

62.
Watada, S., Kusumoto, S. and Satake, K. (2014). Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research:Solid Earth, 119(5), 4287-4310. crossref(new window)

63.
Wijetunge, J.J. (2012). Nearshore tsunami amplitudes off Sri Lanka due to probable worst-case seismic scenarios in the Indian Ocean. Coastal Engineering, 64, 47-56. crossref(new window)

64.
Wijetunge, J.J., Wang, X. and Liu, P.L.F. (2008). Indian Ocean Tsunami on 26 December 2004: numerical modeling of inundation in three cities on the south coast of Sri Lanka. Journal of Earthquake and Tsunami, 2(2), 133-155. crossref(new window)

65.
Yamazaki, Y. and Cheung, K.F. (2011). Shelf resonance and impact of nearfield tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters, 38(12), L12605.

66.
Yokota, Y., Koketsu, K., Fujii, Y., Satake, K., Sakai, S., Shinohara, M. and Kanazawa, T. (2011). Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake. Geophysical Research Letters, 38, L00G21, doi:10.1029/2011GL050098. crossref(new window)

67.
Yoon, S.B. (2002). Propagation of distant tsunamis over slowly varying topography. Journal of Geophysical Research: Oceans (1978-2012), 107(C10), 1-11.

68.
Yoon, S.B., Baek, U., Park, W.K. and Bae, J.S. (2012). Practical forecast-warning system for distant tsunamis. Journal of Korea Water Resources Association. 45(10), 997-1008 (in Korean). crossref(new window)

69.
Yoon, S.B., Lim, C.H. and Choi, J. (2007). Dispersion-correction finite difference model for simulation of transoceanic tsunamis. Terrestrial Atmospheric and Oceanic Sciences, 18(1), 31-53. crossref(new window)