JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Wave Transformation using Modified FUNWAVE-TVD Numerical Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Wave Transformation using Modified FUNWAVE-TVD Numerical Model
Choi, Young-Kwang; Seo, Seung-Nam;
  PDF(new window)
 Abstract
The present modified FUNWAVE-TVD model, which is a modification to its previous version 2.1, is applied to solitary wave propagation and is tested against the experiments of Vincent and Briggs(1989) and Luth et al.(1994). The eddy viscosity breaking scheme is used for comparison with the existing study in the case of breaking experiment. The symmetry of wave-induced current is maintained when the modified model is employed to Vincent and Briggs(1989) breaking experiment, but the symmetry of wave-induced current in previous model is not maintained. A better agreement with the breaking experimental data is obtained in the modified model using eddy viscosity breaking scheme than the shock capturing breaking scheme using nonlinear shallow water equation. For comparison with the schemes in the model, the fourth order MUSCL-TVD scheme by Erduran et al.(2005) and the third order MUSCL-TVD scheme using minmod limiter is applied, and the numerical solutions of solitary wave are compared.
 Keywords
modified FUNWAVE-TVD model;eddy viscosity breaking scheme;Vincent and Briggs(1989) breaking experiment;wave-induced current;
 Language
Korean
 Cited by
 References
1.
Beji, S. and Battjes, J.A. (1993). Experimental investigation of wave propagation over a bar. Coastal Eng., 19, 151-162. crossref(new window)

2.
Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F. and Thornton, E.B. (2003). Boussinesq modeling of longshore currents. J. Geophys. Res., 108(C11), 26-1-26-18.

3.
Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. J. Eng. Mech., 132(2), 220-230. crossref(new window)

4.
Choi, J., Lim, C.H., Lee, J.I. and Yoon, S.B. (2009). Evolution of waves and currents over a submerged laboratory shoal. Coastal Eng., 56, 297-312. crossref(new window)

5.
Erduran, K.S., Ilic, S. and Kutija, V. (2005). Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. Int. J. Numer. Methods Fluids, 49, 1213-1232. crossref(new window)

6.
Gobbi, M.F. and Kirby, J.T. (1999). Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Eng., 37, 57-96. crossref(new window)

7.
Hsiao, S.-C., Liu, P.L.-F. and Chen, Y. (2002). Nonlinear water waves propagating over a permeable bed. Proc. R. Soc. Lond. A, 458, 1291-1322. crossref(new window)

8.
Kennedy, A.B., Chen, Q., Kirby, J.T. and Dalrymple, R.A. (2000). Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. J. Waterway Port Coastal Ocean Eng., 126(1), 39-47. crossref(new window)

9.
Kim, D.H., Lynett, P.J. and Socolofsky, S.A. (2009). A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Model., 27, 198-214. crossref(new window)

10.
Kirby, J,T., Wei, G., Chen, Q., Kennedy, A.B. and Dalrymple, R.A. (1998). FUNWAVE 1.0, Fully nonlinear Boussinesq wave model, Documentation and User's manual. Research report CACR-98-06, University of Delaware.

11.
Luth, H.R., Klopman, G. and Kitou, N. (1994). Kinematics of waves breaking partially on an offshore bar; LDV measurements of waves with and without a net onshore current. Report H-1573, Delft Hydraulics.

12.
Lynett, P.J., Liu, P.L.-F. (2004). A two-layer approach to wave modelling. Proc. R. Soc. Lond. A, 460, 2637-3669. crossref(new window)

13.
Nwogu, O. (1993). An alternative form of the Boussinesq equations for nearshore wave propagation. J. Waterway Port Coastal Ocean Eng., 119, 618-638. crossref(new window)

14.
Nwogu, O.G. and Demirbilek, Z. (2001). BOUSS-2D: A Boussinesq wave model for coastal regions and harbors. Technical report ERDC/CHL TR-01-25, U.S. Army Corps of Engineers.

15.
Roeber, V. and Cheung, K.F. (2012). Boussinesq-type model for energetic breaking waves in fringing reef environments. Coastal Eng., 70, 1-20. crossref(new window)

16.
Shi, F., Dalrymple, R.A., Kirby, J.T., Chen, Q. and Kennedy, A. (2001). A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Eng., 42, 337-358. crossref(new window)

17.
Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D. and Grilli, S.T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model., 43-44, 36-51. crossref(new window)

18.
Shi, F., Tehranirad, B., Kirby, J.T., Harris, J.C. and Grilli, S. (2013). FUNWAVE-TVD, Fully nonlinear Boussinesq wave model with TVD solver, Documentation and User's manual(Version 2.1 revision september 2013). Research report NO. CACR-13-XX, University of Delaware.

19.
Svendson, I.A. (2006). Introduction to nearshore hydrodynamics, World Scientific Publishing Co., Singapore.

20.
Toro, E.F. (1999). Riemann solvers and numerical methods for fluid dynamics, A practical introduction, second ed. Springer, New York.

21.
Vincent, C.L. and Briggs, M.J. (1989). Refraction-diffraction of irregular waves over a mound. J. Waterway Port Coastal Ocean Eng., 115(2), 269-284. crossref(new window)

22.
Walkley, M. and Berzins, M. (2002). A finite element method for the two-dimensional extended Boussinesq equations. Int. J. Numer. Methods Fluids, 39, 865-885. crossref(new window)

23.
Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. 1: Highly nonlinear unsteady waves. J. Fluid Mech., 294, 71-92. crossref(new window)

24.
Woo, S.-B and Liu, P.L.-F. (2004). Finite-element model for modified Boussinesq equations. I:Model development. J. Waterway Port Coastal Ocean Eng., 130(1), 1-16. crossref(new window)

25.
Yamamoto, S., Kano, S. and Daiguji, H. (1998). An efficient CFD approach for simulating unsteady hypersonic shock-shock interference flows. Comput. Fluids, 27, 571-580. crossref(new window)

26.
Yoon, S.B., Cho, Y.-S. and Lee, C. (2004). Effects of breakinginduced currents on refraction-diffraction of irregular waves over submerged shoal. Ocean Eng., 31, 633-652. crossref(new window)