JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Design of Double-Independent-Gate Ambipolar Silicon-Nanowire Field Effect Transistor
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Design of Double-Independent-Gate Ambipolar Silicon-Nanowire Field Effect Transistor
Hong, Seong-Hyeon; Yu, YunSeop;
  PDF(new window)
 Abstract
We propose a new Double-Independent-Gate Ambipolar Silicon-Nanowire Field Effect Transistor(DIG Ambi-SiNWFET). The proposed transistor has two types of gate such as polarity gate and control gate. The polarity gate determines the operation that the gate bias controls NMOSFET or PMOSFET. The voltage of control gate controls the current characteristic of the transistor. We investigated systematically work functions of the two gates and source/drain to operate ambipolar current-voltage characteristics using 2D device simulator. When the work functions of polarity gate, control gate and source/drain are 4.75eV, 4.5eV, and 4.8eV, respectively, it showed the obvious ambipolar characteristics.
 Keywords
Silicon nanowire transistor;tunneling;ambipolar;polarity gate;control gate;transistor design;
 Language
Korean
 Cited by
 References
1.
G. E. Moore, "Cramming more components onto integrated circuits," Electronics, vol. 38, no. 8, pp. 114-117, Apr. 1965.

2.
D. Sacchetto, Y. Leblebici, and G. D. Micheli, "Ambipolar gate-controllable SiNW FETs for configurable logic circuits with improved expressive capability," IEEE Electron Device Lett., vol. 33, no. 2, pp. 143-145, 2012. crossref(new window)

3.
R. A. Vega, and T.-J. K. Liu, "A Comparative Study of Dopant-Segregated Schottky and Raised Source/Drain Double-Gate MOSFETs", IEEE Trans. Electron Devices, vol. 55, no. 10, pp. 2665-2677, Oct. 2008. crossref(new window)

4.
M. Schwarz, T. Holtij, A. Kloes, and B. Iniguez, "2D analytical calculation of the electric field in lightly doped Schottky barrier double-gate MOSFETs and estimation of the tunneling/thermionic current", Solid-State Electronics, vol. 63, pp.119-129, 2011. crossref(new window)

5.
M. Balaguer, B. Iniguez, and J.B. Roldan, "An analytical compact model for Schottky-barrier double gate MOSFETs", Solid-State Electronics, vol. 64, pp. 78-84, 2011. crossref(new window)

6.
H. A. Vladimirescu, A. Amara, and C. Anghel, "An analysis on the ambipolar current in Si double-gate tunnel FETs", Solid-State Electronics, vol. 70, pp. 67-72, 2012. crossref(new window)

7.
M. Schwarz, T. Holtij, A. Kloes, and B. Iniguez, "Performance study of a Schottky barrier double-gate MOSFET using a two-dimensional analytical model", IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 884-886, Feb. 2013. crossref(new window)

8.
G. Zhu, X. Zhou, Y.-K. Chin, K. L. Pey, J. Zhang, G. H. See, S. Lin, Y. Yan, and Z. Chen, "Subcircuit compact model for dopant-segregated Schottky gate-all-around Si-Nanowire MOSFETs", IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 772-781, Apr. 2010. crossref(new window)

9.
G. Zhu, X. Zhou, T. S. Lee, L. K. Ang, G. H. See, S. Lin, Y.-K. Chin, and K. L. Pey, "A Compact Model for Undoped Silicon-Nanowire MOSFETs With Schottky- Barrier Source/Drain", IEEE Trans. Electron Devices, vol. 56, no. 5, pp. 1100-1109, May 2009. crossref(new window)

10.
D. Sacchetto, V. Savu, G. D. Micheli, J. Brugger, and Y. Leblebici, "Ambipolar silicon nanowire FETs with stenciled-deposited metal gate," Microelectron Eng., vol. 88, pp. 2732-2735, 2011. crossref(new window)

11.
M. De Marchi, D. Sacchetto, S. Frache, J. Zhang, P.-E. Gaillardon, Y. Leblebici, and G. De Micheli, "Polarity Control in Double-Gate, Gate-All-Around Vertically Stacked Silicon Nanowire FETs," in Proc. IEEE IEDM, Dec. 2012, pp. 183-186.

12.
J. L. Padilla, L. Knoll, F. Gamiz, Q. T. Zhao, A. Godoy, and S. Mantl, "Simulation of Fabricated 20-nm Schottky Barrier MOSFETs on SOI: Impact of Barrier Lowering", IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1320-1327, 2012. crossref(new window)

13.
ATLAS User's Manual Device Simulation Software, SILVACO, Inc., Santa Clara, CA, Nov 10, 2014.

14.
K. Matsuzawa, K. Uchida, and A. Nishiyama, "A Unified Simulation of Schottky and Ohmic Contacts" IEEE Trans. Electron Devices, vol. 47, no. 1, pp. 103-108, 2000. crossref(new window)