JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Continuous Fine-Tuning Phase Locked Loop with Additional Negative Feedback Loop
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Continuous Fine-Tuning Phase Locked Loop with Additional Negative Feedback Loop
Choi, Young-Shig;
  PDF(new window)
 Abstract
A continuous fine-tuning phase locked loop with an additional negative feedback loop has been proposed. When the phase locked loop is out-of-lock, the phase locked loop has a fast locking characteristic using the continuous band-selection loop. When the phase locked loop is near in-lock, the bandwidth is narrowed with the fine loop. The additional negative feedback loop consists of a voltage controlled oscillator, a frequency voltage converter and its internal loop filter. It serves a negative feedback function to the main phase locked loop, and improves the phase noise characteristics and the stability of the proposed phase locked loop. The additional negative feedback loop makes the continuous fine-tuning loop work stably without any voltage fluctuation in the loop filter. Measurement results of the fabricated phase locked loop in CMOS process show that the phase noise is -109.6dBc/Hz at 2MHz offset from 742.8MHz carrier frequency.
 Keywords
PLL;Continuous Band-selection;Two Negative Feedback Loops;Phase Noise;
 Language
Korean
 Cited by
 References
1.
Floyd M. Gardner, "Charge-Pump Phase-Lock Loop," IEEE J. Tran, on Communications, vol. COM-28, no. 11, pp. 1849-1858, Nov. 1980.

2.
K. Lim, C. Park, D. Kim and B. Kim, "A Low-Noise Phase-Locked Design by Loop Bandwidth Optimization," IEEE J. solid state circuits, vol. 35, no. 6, pp. 807-815, June 2000. crossref(new window)

3.
Mozhgan Mansuri and Chih-Kong Ken Yang, "Jitter Optimization Based on Phase-Locked Loop Design Parameters," IEEE J. solid state circuits, vol. 37, no. 11, pp. 1375-1382, Nov. 2002. crossref(new window)

4.
J. Oehm and D. Pham-Stabner, "Linear Controlled Temperature Independent Varactor Circuitry," in Proc. 28th Eur. Solid-State Circuits Conf., Sep. 2002, pp. 143-146.

5.
B. Hanafi and E. Hegazi, "A Technique for Truly linear LC VCO Tuning, a Proof of Concept," in Proc. Int. Conf. Microelectron., pp. 93-146, Dec. 2007.

6.
Y. Tokunaga, S. Sakiyama, A. Matsumoto and S. Dosho, "An On-Chip CMOS Relaxation Oscillator with Voltage Averaging Feedback," IEEE J. solid state circuits, vol. 45, no. 6, pp. 1150-1158, Jun. 2010. crossref(new window)

7.
A. A. Abidi, "Linearization of Voltage-Controlled Oscillators using Switched Capacitor Feedback," IEEE J. solid state circuits, vol. 22, no. 3, pp. 494-496, Jun. 1987. crossref(new window)

8.
M. Youssef, A. Zolfaghari, H. Darabi and A. A. Abidi, "A Low-Power Wideband Polar Transmitter for 3G Applications," in IEEE ISSCC Dig. Tech. Papers, pp. 378-380, 2011.

9.
M. Youssef, A. Zolfaghari, B. Mohammadi, H. Darabi and A. A. Abidi, "A Low-Power Wideband Polar Transmitter in 65-nm CMOS," IEEE J. solid state circuits, vol. 46, no. 12, pp. 3061-3074, Dec. 2011. crossref(new window)

10.
S. Min, T. Copani, S. Kiaei and B. Bakkaloglu, "A 90-nm CMOS 5-GHz Ring-Oscillator PLL with Delay-Discriminator-based Active Phase-Noise Cancellation," IEEE J. solid state circuits, vol. 48, no. 5, pp. 1151-1160, May 2013. crossref(new window)

11.
W. B. Wilson, Un-Ku Moon, K. R. Lakshmikumar and L. Dai, "A CMOS self-calibrating frequency synthesizer," IEEE J. Solid-State Circuits, vol.35, no.10, pp.1437-1444, Oct. 2000. crossref(new window)

12.
H.I. Lee, J.K. Cho, K.S. Lee, I.C. Hwang, T.W. Ahn, K.S. Nah and B.H. Park, "A ${\Delta}{\Sigma}$ fractional-N frequency synthesizer using a wide band integrated VCO and a fast AFC technique for GSM/GPRS/WCDM applications," IEEE J. Solid-State Circuits, vol.39, no.7, pp.1164-1169, Jul. 2004 crossref(new window)

13.
T. H. Lin and W. J. Kaiser, "A 900-MHz 2.5mA CMOS frequency synthesizer with an automatic SC tuning loop," IEEE J. Solid-State Circuits, vol.36, no.3, pp.424-431, Mar. 2001. crossref(new window)

14.
Y.W. Chen, Y.H. Yu and Y.J. Emery Chen, "A 0.18-${\mu}m$ CMOS dual-band frequency synthesizer with spur reduction calibration," IEEE Microwave and wireless components letters, vol.23, no.10, pp. 551-553, Oct. 2013. crossref(new window)

15.
T. H. Lin and Y. J. Lai, "Am agile VCO frequency calibration technique for a 10-GHz CMOS PLL," IEEE J. Solid-State Circuits, vol. 42, no.2, pp. 340-349, Feb. 2007. crossref(new window)

16.
J. S. Shin and H. C. Shin, "A 1.9-3.8 GHz ${\Delta}{\Sigma}$ fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency," IEEE J. Solid-State Circuits, vol.47, no.3, pp. 665-675, March. 2012. crossref(new window)

17.
Y-G. Song, Y. S. Choi and J-G Ryu, "A phase-locked loop of the resistance and capacitance scaling scheme with multiple charge pump," Analog Integr. Circ. Sig. Process, vol. 66, no. 2, 155-162, Feb. 2011. crossref(new window)

18.
J. H. Nam, Y. S. Choi and M. G. Joo, "A single capacitor loop filter phase-locked loop with frequency voltage converter," Analog Integr. Circ. Sig. Process, vol. 74, no. 1, pp. 193-201, Jan. 2013. crossref(new window)

19.
Young-Shig Choi, "A Negative Feedback Looped Voltage-Controlled Ring Oscillator with Frequency Voltage Converter," IEEE Trans. Microwave theory and techniques, vol. 61, no. 9, pp. 3271-3276, Sept. 2013. crossref(new window)