JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Numerical Analysis on Depressurization of High Pressure Carbon Dioxide Pipeline
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Numerical Analysis on Depressurization of High Pressure Carbon Dioxide Pipeline
Huh, Cheol; Cho, Meang Ik; Kang, Seong Gil;
  PDF(new window)
 Abstract
To inject huge amount of for CCS application, high pressure pipeline transport is accompanied. Rapid depressurization of pipeline is required in case of transient processes such as accident and maintenance. In this study, numerical analysis on the depressurization of high pressure pipeline was carried out. The prediction capability of the numerical model was evaluated by comparing the benchmark experiments. The numerical models well predicted the liquid-vapor two-phase depressurization. On the other hands, there were some limitations in predicting the temperature behavior during the supercritical, liquid phase and gaseous phase expansions.
 Keywords
Carbon Capture and Storage; Transport;Depressurization;High Pressure Pipeline;Joule-Thomson expansion;
 Language
Korean
 Cited by
1.
시간 경과에 따른 저류층 압력 상승이 파이프라인, 탑사이드 및 주입정 내 CO2 거동에 미치는 영향에 대한 수치해석적 연구,민일홍;허철;최윤선;김현욱;조맹익;강성길;

한국해양환경ㆍ에너지학회지, 2016. vol.19. 4, pp.286-296 crossref(new window)
1.
Numerical Analysis of CO2 Behavior in the Subsea Pipeline, Topside and Wellbore With Reservoir Pressure Increase over the Injection Period, Journal of the Korean Society for Marine Environment and Energy, 2016, 19, 4, 286  crossref(new windwow)
 References
1.
Amstrong, K. and Allason, D., 2014, "2" NB Shocktube Releases of Dense Phase $CO_2$", Report No. 14616, DNV GL.

2.
Brown, S., Martynov, S., Mahgerefteh, H., Chen, S. and Zhang, Y., 2014, "Modelling the non-equilibrium two-phase flow during depressurization of $CO_2$ pipeline", Int. J. Greenhouse Gas Control, Vol. 30, 9-18. crossref(new window)

3.
Calsep, 2015, "PVTSim Technical Overview".

4.
Cho, M.I., Huh, C., Jung, J.Y., Baek, J.H. and Kang, S.G., 2012, "Experimental study on N2 impurity effect in the pressure drop during $CO_2$ mixture transportation", J. Korean Soc. Mar. Environ. Eng., Vol. 5, 67-75.

5.
Clausen, S., Oosterkamp, A. and Strom, K.L., 2012, "Depressurization of a 50 km long 24 inches $CO_2$ pipeline", Energy Procedia, Vol. 23, 256-265. crossref(new window)

6.
CO2PIPETRANS, 2015, https://www.dnvgl.com/oilgas/innovation-development/joint-industry-projects/co2pipetrans.html, DNVGL.

7.
de Koeijer G., Borch, J.H., Drescher, M., Li, H., Wilhelmsen, O. and Jakobsen, J., 2011, "$CO_2$ transport - depressurization, heat transfer and impurities", Energy Procedia, Vol. 4, 3008-3015. crossref(new window)

8.
Eirik. S.T., 2013, "Modeling of transient $CO_2$ flow in pipelines and wells", Master's thesis, NTNU.

9.
Huh, C., Kang, S.G. and Cho, M.I., 2010, "$CO_2$ transport for CCS application in Republic of Korea", J. Korean Soc. Mar. Environ. Eng., Vol. 13, 18-29.

10.
Huh, C., Cho, M.I., Hong, S. and Kang, S.G., 2014, "Effect of impurities on depressurization of $CO_2$ pipeline transport", Energy Procedia, Vol. 63, 2583-2588. crossref(new window)

11.
Infochem, 2014, "User Guide for Multiflash for Windows".

12.
Munkejord, S.T. and Hammerk, M., 2015, "Depressurization of $CO_2$-rich mixtures in pipes: Two-phase flow modelling and comparison with experiments", Int. J. Greenhouse Gas Control, Vol. 37, 398-411. crossref(new window)

13.
Schlumberger, 2014, "OLGA version 2014.1 User Manual".

14.
Tu, R., Xie, Q., Yi, J., Li, K., Zhou, X. and Jiang, X., 2014, "An experimental study on the leakage process of high pressure $CO_2$ from a pipeline transport system", Greenhouse Gas Science and Technology, Vol. 4, 777-784. crossref(new window)

15.
Vree, B., Ahmad, M., Buit, L. and Florisson, O., 2015, "Rapid depressurization of a $CO_2$ pipeline - an experimental study", Int. J. Greenhouse Gas Control, Vol. 41, 41-49. crossref(new window)