JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CRDS Study of Tropospheric Ozone Production Kinetics : Isoprene Oxidation by Hydroxyl Radical
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CRDS Study of Tropospheric Ozone Production Kinetics : Isoprene Oxidation by Hydroxyl Radical
Park, Ji-Ho;
  PDF(new window)
 Abstract
The tropospheric ozone production mechanism for the gas phase additive oxidation reaction of hydroxyl radical (OH) with isoprene (2-methyl-1,3-butadiene) has been studied using cavity ring-down spectroscopy (CRDS) at total pressure of 50 Torr and 298 K. The applicability of CRDS was confirmed by monitoring the shorter (~4%) ringdown time in the presence of hydroxyl radical than the ring-down time without the photolysis of hydrogen peroxide. The reaction rate constant, , for the addition of OH to isoprene is in good agreement with previous studies. In the presence of and NO, hydroxyl radical cycling has been monitored and the simulation using the recommended elementary reaction rate constants as the basis to OH cycling curve gives reasonable fit to the data.
 Keywords
cavity ring-down spectroscopy;ozone;isoprene;oxidation;rate constant;
 Language
English
 Cited by
 References
1.
Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Middleton, P., Wang, T. : Ozone precursor relationships in the ambient atmosphere. Journal of Geophyscal Research, 97, 6037-6055, 1992 crossref(new window)

2.
Rasmussen, R. A., Khalil, M. A. : Isoprene over the amazon basin. Journal of Geophyscal Research, 93, 1417-1421, 1988 crossref(new window)

3.
Atmospheric Chemistry and Global Change: Brasseur, G. P., Orlando, J. J., Tyndall, G. S., New York Oxford, Oxford University Press, 1999

4.
Fenger, J. : Urban air quality. Atmospheric Environment, 33, 4877-4900, 1999 crossref(new window)

5.
Jenkin, M. E., Hayman, G. D. : Kinetics of reactions of primary, secondary and tertiary betahydroxy peroxyl radicals-Application to isoprene degradation. Journal of the Chemical Society-Faraday Transactions, 91, 1911-1922, 1995 crossref(new window)

6.
Atkinson, R., Aschmann, S. M., Tuazon, E. C., Arey, J., Zielinska, B. : Formation of 3-methylfuran from the gas phase reaction of OH radicals with isoprene and the rate constant for its reaction with OH radical. International Journal of Chemical Kinetics, 21, 593-604, 1989 crossref(new window)

7.
Paulson, S. E., Seinfeld, J. H. : Development and evaluation of photooxidation mechanism for isoprene. Journal of Geophyscal Research, 97, 20703-20715, 1992 crossref(new window)

8.
Francisco-Marquez, M., Alvarez-Idaboy, J. R., Galano, A., Vivier-Bunge, A. : Theoretical study of the initial reaction between OH and isoprene in tropospheric conditions. Physical Chemistry Chemical Physics, 5, 1392-1399, 2003 crossref(new window)

9.
McGivern, W. S., Suh, I. S., Clinkenbeard, A. D., Zhang, R., North, S. W. : Experimental and computational study of the OH-isoprene reaction: Isomeric branching and low-pressure behavior. Journal of Physical Chemistry A, 104, 6609-6016, 2000 crossref(new window)

10.
Zhang, R. Y., Suh, I., Lei, W., Clinkenbeard, A. D., North, S. W. : Kinetic studies of OH-initiated reactions of isoprene. Journal of Geophyscal Research-Atmospheres, 105, 24627-24635, 2000 crossref(new window)

11.
Stevens, P. S., Seymour, E., Li, Z. J. : Theoretical and experimental studies of the reaction of OH with isoprene. Journal of Physical Chemistry A, 104, 5989-5997, 2000 crossref(new window)

12.
Lei, W. F., Zhang, R. Y. : Theoretical study of hydroxyisoprene alkoxy radicals and their decomposition pathways. Journal of Physical Chemistry A, 106, 3808-3815, 2001 crossref(new window)

13.
Kleindienst, T. E., Harris, G. W., Pitts, J. N. : Rates and temperature dependences of the reaction of OH with isoprene, its oxidation-products, and selected terpenes. Environmental Science & Technology, 16, 844-846, 1982 crossref(new window)

14.
Chuong, B., Stevens, P. S. : Kinetic study of the OH plus isoprene and OH plus ethylene reactions between 2 and 6 torr and over the temperature range 300-423 K. Journal of Physical Chemistry A, 104, 5230-5237, 2000 crossref(new window)

15.
Iida, Y., Obi, K., Imamura, T. : Rate constant for the reaction of OH radicals with isoprene at 298 ± 2K. Chemistry Letters, 8, 792-793, 2002

16.
Lei, W. F., Zhang, R., McGivern, W. S., Derecskei-Kovacs, A., North, S. : Theoretical study of OH-O2-isoprene peroxy radicals. Journal of Physical Chemistry A, 105, 471-477, 2001 crossref(new window)

17.
Park, J., Jongsma, G., Zhang, R., North, S. : OH/OD Initiated oxidation of isoprene in the presence of O$_{2}$ and NO. Journal of Physical Chemistry A, 108, 10688-10697, 2004 crossref(new window)

18.
Zhang, D., Zhang, R., Church, C., North, S. : Theoretical study of OH-O$_{2}$-isoprene peroxy radicals. Chemical Physcs Letter A, 343, 49-54, 2001 crossref(new window)

19.
Zhang, D., Suh, I., Clinkenbeard, A., Lei, W., North, S. : Kinetic studies of OH-initiated reactions of isoprene. Journal of Geophyscal Research-Amospheres, 105, 24627-24635, 2000 crossref(new window)

20.
O'Keefe, A., Deacon, D. A. : Cavity ring-down optical spectrometer for absorption measurements using pused laser sources. Review of Scientific Instruments, 59, 2544-2551, 1988 crossref(new window)

21.
Pushkarsky, M. B., Zalyubovsky, S. J., Miller, T. A. : Detection and characterization of alkyl peroxy radicals using cavity ringdown spectroscopy. Journal of Chemical Physics, 112, 10695-10698, 2000 crossref(new window)

22.
Rupper, P., Sharp, E. N., Tarczay, G., Miller, T. A. : Investigation of ethyl peroxy radical conformers via cavity ringdown spectroscopy of the electronic transition. Journal of Physical Chemistry A, 111, 832-840, 2007 crossref(new window)

23.
Liu, Y. D., Morales-Cueto, R., Hargrove, J., Medina, D., Zhang, J. S. : Measurements of peroxy radicals using chemical amplification-cavity ringdown spectroscopy. Environmental Science & Technology, 43, 7791-7796, 2009 crossref(new window)

24.
Choi, Y. M., Xia, W. S., Park, J., Lin, M. C. : Kinetics and mechanism for the reaction of phenyl radical with formaldehyde. Journal of Physical Chemistry A, 104, 7030-7035, 2000 crossref(new window)

25.
Park, J., Tokmakov, I. V., Lin, M. C. : Experimental and computational studies of the phenyl radical reaction with Allene. Journal of Physical Chemistry A, 111, 6881-6889, 2007 crossref(new window)

26.
Atkinson, D. B., Hudgens, J. W. : Chemical kinetic studies using ultraviolet cavity ring-down spectroscopic detection: Self-reaction of ethyl and ethylperoxy radicals and the reaction O$_{2}$+C$_{2}$H$_{5}$->C$_{2}$H$_{5}$O$_{2}$. Journal of Physical Chemistry A, 101, 3901-3909, 1997 crossref(new window)

27.
Atkinson, D. B., Hudgens, J. W., Orr-Ewing, A. J. : Kinetic studies of the reactions of IO radicals determined by cavity ring-down spectroscopy. Journal of Physical Chemistry A, 103, 6173-6180, 1999 crossref(new window)

28.
Atkinson, D. B., Hudgens, J. W. : Chlorination chemistry. 2. Rate coefficients, reaction mechanism, and spectrum of the chlorine adduct of allene. Journal of Physical Chemistry A, 104, 811-818, 2000 crossref(new window)

29.
Summary of Evaluated Kinetic and Phtochemical Data for Atmospheric Chemistry. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry : Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F. Jr., Kerr, J. A., Rossi, M. J., Troe, J., London, Blackwell, 2002

30.
Chen, X. H., Hulbert, D., Shepson, P. B. : Measurement of the organic nitrate yield from OH reaction with isoprene. Journal of Geophyscal Research-tmospheres, 109, 25563-25568, 1998

31.
Wallington, T. J., Dagaut, P., Kurylo, M. J. : Ultraviolet absorption cross sections and reaction kinetics and mechanisms for peroxy radicals in the gas phase. Chemical Review, 92, 667-710, 1992 crossref(new window)