JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Viable Alternatives to in vivo Tests for Evaluating the Toxicity of Engineered Carbon Nanotubes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Viable Alternatives to in vivo Tests for Evaluating the Toxicity of Engineered Carbon Nanotubes
Kwon, Soon-Jo; Eo, Soo-Mi;
  PDF(new window)
 Abstract
Carbon nanotubes (CNTs) stand at the frontier of nanotechnology and are destined to stimulate the next industrial revolution. Rapid increase in their production and use in the technology industry have led to concerns over the effects of CNT on human health and the environment. The prominent use of CNTs in biomedical applications also increases the possibility of human exposure, while properties such as their high aspect ratio (fiber-like shape) and large surface area raise safety concerns for human health if exposure does occur. It is crucial to develop viable alternatives to in vivo tests in order to evaluate the toxicity of engineered CNTs and develop validated experimental models capable of identifying CNTs` toxic effects and predicting their level of toxicity in the human respiratory system. Human lung epithelial cells serve as a barrier at the interface between the surrounding air and lung tissues in response to exogenous particles such as air-pollutants, including CNTs. Monolayer culture of the key individual cell types has provided abundant fundamental information on the response of these cells to external perturbations. However, such systems are limited by the absence of cell-cell interactions and their dynamic nature, which are both present in vivo. In this review, we suggested two viable alternatives to in vivo tests to evaluate the health risk of human exposure to CNTs.
 Keywords
CNT toxicity;3D co-culture;Dynamic cell culture;CNT diffusion;
 Language
English
 Cited by
 References
1.
Baktur R, Patel H, Kwon S. Effect of exposure conditions on SWCNT-induced inflammatory response in human alveolar epithelial cells. Toxicol In Vitro. 2011; 25(5): 1153-1160. crossref(new window)

2.
Chin SF, Baughman RH, Dalton AB, Dieckmann GR, Draper RK, Mikoryak C, Musselman IH, Poenitzsch VZ, Xie H, Pantano P. Amphiphilic helical peptide enhances the uptake of singlewalled carbon nanotubes by living cells. Exp Biol Med (Maywood). 2007; 232(9): 1236-1244. crossref(new window)

3.
Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 2006; 6(7): 1522- 1528. crossref(new window)

4.
Helland A, Wick P, Koehler A, Schmid K, Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect. 2007; 115(8): 1125-1131. crossref(new window)

5.
Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 2006; 36(3): 189-217. crossref(new window)

6.
Yang K, Wang X, Zhu L, Xing B. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ Sci Technol. 2006; 40(18): 5804-5810. crossref(new window)

7.
Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 2008; 8(2): 437-445. crossref(new window)

8.
Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005; 289(5): L698-708. crossref(new window)

9.
Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004; 77(1): 117-125. crossref(new window)

10.
Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005; 207(3): 221-231. crossref(new window)

11.
Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci. 2007; 100(1): 203-214. crossref(new window)

12.
Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004; 77(1): 126-134.

13.
Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect. 2007; 115(3): 377-382. crossref(new window)

14.
Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006; 92(1): 5-22. crossref(new window)

15.
Adachi Y, Mio T, Takigawa K, Striz I, Romberger DJ, Spurzem JR, Rennard SI. Fibronectin production by cultured human lung fibroblasts in threedimensional collagen gel culture. In Vitro Cell Dev Biol Anim. 1998; 34(3): 203-210. crossref(new window)

16.
Fredriksson K, Lundahl J, Fernvik E, Liu XD, Rennard SI, Skold CM. Red blood cells stimulate fibroblast-mediated contraction of three dimensional collagen gels in co-culture. Inflamm Res. 2002; 51(5): 245-251. crossref(new window)

17.
Infeld MD, Brennan JA, Davis PB. Human tracheobronchial epithelial cells direct migration of lung fibroblasts in three-dimensional collagen gels. Am J Physiol. 1992; 262(5 Pt 1): L535-541.

18.
Agarwal A, Coleno ML, Wallace VP, Wu WY, Sun CH, Tromberg BJ, George SC. Two-photon laser scanning microscopy of epithelial cell-modulated collagen density in engineered human lung tissue. Tissue Eng. 2001; 7(2): 191-202. crossref(new window)

19.
Mio T, Liu XD, Adachi Y, Striz I, Skold CM, Romberger DJ, Spurzem JR, Illig MG, Ertl R, Rennard SI. Human bronchial epithelial cells modulate collagen gel contraction by fibroblasts. Am J Physiol. 1998; 274(1 Pt 1): L119-126.

20.
Umino T, Wang H, Zhu Y, Liu X, Manouilova LS, Spurzem JR, Patricia Leuschen M, Rennard SI. Modification of type I collagenous gels by alveolar epithelial cells. Am J Respir Cell Mol Biol. 2000; 22(6): 702-707. crossref(new window)

21.
Zhang S, Smartt H, Holgate ST, Roche WR. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodeling in asthma. Lab Invest. 1999; 79(4): 395-405.

22.
Morishima Y, Nomura A, Uchida Y, Noguchi Y, Sakamoto T, Ishii Y, Goto Y, Masuyama K, Zhang MJ, Hirano K, et al. Triggering the induction of myofibroblast and fibrogenesis by airway epithelial shedding. Am J Respir Cell Mol Biol. 2001; 24(1): 1-11. crossref(new window)

23.
Swartz MA, Tschumperlin DJ, Kamm RD, Drazen JM. Mechanical stress is communicated between different cell types to elicit matrix remodeling. Proc Natl Acad Sci USA 2001; 98(11): 6180-6185. crossref(new window)

24.
Rejman J, Di Gioia S, Bragonzi A, Conese M. Pseudomonas aeruginosa infection destroys the barrier function of lung epithelium and enhances polyplex-mediated transfection. Hum Gene Ther. 2007; 18(7): 642-652. crossref(new window)

25.
Chambers E, Mitragotri S. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp Biol Med (Maywood). 2007; 232(7): 958-966.

26.
Patel H, Eo S, Kwon S. Effects of diesel particulate matters on inflammatory responses in static and dynamic culture of human alveolar epithelial cells. Toxicol Lett. 2011; 200(1-2): 124-131. crossref(new window)

27.
Huh D, Matthews BD, Mammoto A, Montoya- Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science. 2010; 328(5986): 1662-1668. crossref(new window)

28.
Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 2008; 295(4): L552-565. crossref(new window)

29.
Shinohara N, Nakazato T, Tamura M, Endoh S, Fukui H, Morimoto Y, Myojo T, Shimada M, Yamamoto K, Tao H, et al. Clearance kinetics of fullerene C nanoparticles from rat lungs after intratracheal C instillation and inhalation C exposure. Toxicol Sci. 2010; 118(2): 564-573. crossref(new window)

30.
Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Schwegler-Berry D, Castranova V, Porter DW. Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol. 2010; 7: 28. crossref(new window)

31.
Pauluhn J. Poorly soluble particulates: searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation. Toxicology. 2011; 279(1-3): 176-188. crossref(new window)

32.
Tschumperlin DJ, Margulies SS. Equibiaxial deformation- induced injury of alveolar epithelial cells in vitro. Am J Physiol. 1998; 275(6 Pt 1): L1173-1183.

33.
Patel H, Kwon S. Interplay between cytokineinduced and cyclic equibiaxial deformation-induced nitric oxide production and metalloproteases expression in human alveolar epithelial cells. Cellular and Molecular Bioengineering. 2009; 2(4): 615-624. crossref(new window)

34.
Schulte PA. The use of biomarkers in surveillance, medical screening, and intervention. Mutat Res. 2005; 592(1-2): 155-163. crossref(new window)

35.
Stocker E, Purser F, Kwon S, Park YB, Lee JS. Alternative estimation of human exposure of single-walled carbon nanotubes using three-dimensional tissue-engineered human lung. Int J Toxicol. 2008; 27(6): 441-448. crossref(new window)