Advanced SearchSearch Tips
Evaluation of Mucosal Immunity in BTBR T+tf/J Mice Resembling Autism Spectrum Disorder
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Evaluation of Mucosal Immunity in BTBR T+tf/J Mice Resembling Autism Spectrum Disorder
Hwang, So Ryeon; Jo, Ji Hoon; Shin, Kyeong Min; Jang, Yun Young; Kim, Ji Youn; Yeo, Kyeong Uk; Kim, Hyoung Ah; Heo, Yong;
  PDF(new window)
Objectives: This study was undertaken in order to evaluate a potential mechanism involved in gastro-intestinal problems observed in autistic subjects and uses an animal model of autism investigation. Methods: BTBR T+tf/J, a mouse strain with typical socio-behavioral characteristics of autistic subjects and FVB mice with highly social behaviors as the control strain were used. Both genders of mice aged three weeks and six months were used from four separate litters for each strain. Serum was prepared following cardiac puncture, and mesenteric lymph nodes were collected for in vitro stimulation and enumeration of major immune cell proportion. Results: The level of serum IgA was significantly enhanced in six-month-old BTBR mice compared with three-week-old BTBR, which was not observed with the FVB control mice. The serum IgE level was also higher among BTBR mice than among age-sex matched FVB mice, respectively. Considering the ratio of interleukin-4 vs interferon-gamma production from mesenteric lymph node T cells, skewedness toward type-2 reactivities was observed. In addition, the proportion of B cells in mesenteric lymph nodes was significantly higher in BTBR mice than in FVB mice. Conclusion: Upregulation of mucosal immunity related with enhanced type-2 immune reactivity observed in BTBR mice could be involved with the etiology of gastro-intestinal abnormalities in autism.
autism;mucosal immunity;BTBR T+tf/J mice;IgA;
 Cited by
항균활성 천연물질을 이용한 반추위 메탄저감용 친환경 첨가제 개발,이아름;양진호;조상범;나종삼;심관섭;김영훈;배귀석;장문백;최빛나;신수진;최낙진;

한국유기농업학회지, 2014. vol.22. 3, pp.491-502 crossref(new window)
Becker KG. Autism, asthma, inflammation, and the hygiene hypothesis. Med Hypotheses. 2007; 69: 731-740. crossref(new window)

Geschwind DH. Advances in autism. Annu Rev Med. 2009; 60: 367-380. crossref(new window)

Grigorenko EL. Pathogenesis of autism: a patchwork of genetic causes. Future Neurol. 2009; 4: 591-599. crossref(new window)

Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufman WE, Law PA. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med. 2009; 163: 907- 914. crossref(new window)

CDC. Prevalence of autism spectrum disorders - Autism and Developmental Disabilities Monitoring Network, United States, 2006. MMWR Surveill Summ. 2009; 58: 1-20.

Kim YS, Leventhal BL, Koh YJ, Fombonne E, Laska E, Lim EC, et al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry. 2011; 168: 904-912. crossref(new window)

Blaylock RL. A possible central mechanism in autism spectrum disorders, part 1. Altern Ther Health Med. 2008; 14(6): 46-53.

Blaylock RL. A possible central mechanism in autism spectrum disorders, part 2: immunoexcitotoxicity. Altern Ther Health Med. 2009; 15(1): 60- 67.

Blaylock RL. A possible central mechanism in autism spectrum disorders, part 3: the role of excitotoxin food additives and the synergistic effects of other environmental toxins. Altern Ther Health Med. 2009; 15(2): 56-60.

Stigler KA, Sweeten TL, Posey DJ, McDougle CJ. Autism and immune factors: a comprehensive review. Res Autism Spectr Disord. 2009; 3: 840- 860. crossref(new window)

Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, Barbaro RP, et al. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav. Brain Res. 2007; 176: 4-20. crossref(new window)

Bolivar VJ, Walters SR, Phoenix JL. Assessing autism-like behavior in mice: variations in social interactions among inbred strains. Behav. Brain Res. 2007; 176: 21-26. crossref(new window)

McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 2008; 7: 152-163. crossref(new window)

Heo Y, Zhang Y, Gao D, Miller VM, Lawrence DA. Aberrant immune responses in a mouse with behavioral disorders. PLoS One. 2011; 6(7): e20912. crossref(new window)

Park H-S, Heo Y-J, Byun J-A, Heo Y. Immunotoxicological evaluation of pollen intake using mice model. J Environ Health Sci. 2005; 31(4): 287-293.

Lee S-H, Baek S-J, Kim H-A, Heo Y. 2,4-dinitrochrlobenzene- induced atopic dermatitis like immune alteration in mice. J Toxicol Pub Health. 2006; 22(4): 357-364.

Kim S-N, Kim Y-C, Kim H-A, Heo Y. A potential mechanism of 2,4-dinitrochlorobenzene-mediated immune alterations resembling human atopic dermatitis in mice. Quant Bio-Sci. 2011; 30(2): 85-90.

Heo Y, Saxon A, Hankinson O. Effect of diesel exhaust particles and their components on the allergen- specific IgE and IgG1 response in mice. Toxicology, 2001; 159: 143-158. crossref(new window)

Gans H, De Hovitz R, Forghani B, Beeler J, Maldonado Y, Arvin AM. Measles and mumps vaccination as a model to investigate the developing immune system: passive and active immunity during the first year of life. Vaccine. 2003; 21: 3398- 3405. crossref(new window)

Ashwood P, Van de Water J. A review of autism and the immune response. Clin Develop Immunol. 2004; 11(2): 165-174. crossref(new window)

Torrente F, Ashwood P, Day R, Machado N, Furlano RI, Anthony A, et al. Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Mol Psychiatry. 2002; 7: 375-382. crossref(new window)

Sutherland DB, Fagarasan S. IgA synthesis: a form of functional immune adaptation extending beyond gut. Curr Opin Immunol. 2012; 24: 261-268. crossref(new window)

Reichelt KL, Landmark J. Specific IgA antibody increases in schizophrenia. Biol Psychiatry. 1995; 37: 410-413. crossref(new window)

Maes M, Mihaylova I, Leunis JC. Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement og gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. J Affective Disorders. 2007; 99: 237-240. crossref(new window)

Edelson BT, Unanue ER. Immunity to listeria infection. Curr Opin Immunol. 2000; 12: 425-431. crossref(new window)