Advanced SearchSearch Tips
Metal Oxide Nanocolumns for Extremely Sensitive Gas Sensors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Metal Oxide Nanocolumns for Extremely Sensitive Gas Sensors
Song, Young Geun; Shim, Young-Seok; Han, Soo Deok; Lee, Hae Ryong; Ju, Byeong-Kwon; Kang, Chong Yun;
  PDF(new window)
Highly ordered and NiO nanocolumns have been successfully achieved by glancing-angle deposition (GLAD) using an electron beam evaporator. Nanocolumnar and NiO sensors exhibited high performance owing to the porous nanostructural effect with the formation of a double Schottky junction and high surface-to-volume ratios. When all gas sensors were exposed to various gases such as , , and , the response of the highly ordered nanocolumn were over 50 times higher than that of the thin film. This work will bring broad interest and create a strong impact in many different fields owing to its particularly simple and reliable fabrication process.
Gas sensors;Oxide semiconductors;;NiO;Glancing angle deposition;
 Cited by
Ag-decorated SnO2 nanorods: microwave-assisted green synthesis and enhanced ethanol gas sensing properties , Micro & Nano Letters, 2017, 12, 4, 245  crossref(new windwow)
Highly Sensitive Sensors Based on Metal-Oxide Nanocolumns for Fire Detection, Sensors, 2017, 17, 12, 303  crossref(new windwow)
H. J. Kim, J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview", Sens. Actuators, B, Vol. 192, pp. 607-627, 2014. crossref(new window)

J. H Lee, "Gas sensors using hierarchical and hollow oxide nanostructures: overview", Sens. Actuators, B, Vol. 140, pp. 319-336, 2009. crossref(new window)

A. Kolmakov, M. Moskovits, "Chemical sensing and catalysis by one-dimensionalmetal-oxide nanostructures", Ann. Rev. Mater. Res, Vol. 34, pp. 151-180, 2014.

E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, "Quasi-one dimensional metal oxide semiconductors: preparation, charac-terization and application as chemical sensors", Prog. Mater. Sci, Vol. 54, pp. 1-67, 2009. crossref(new window)

V.V. Sysoev, T. Schneider, J. Goschnick, I. Kiselev, W. Habicht, H. Hahn, E. Strel-cov, A. Kolmakov, "Percolating $SnO_2$ nanowire network as a stable gas sensor: Direct comparison of long-term performance versus $SnO_2$ nanoparticle films", Sens. Actuators. B, Vol. 139, pp. 699-703, 2009. crossref(new window)

X. Li, E. Chin, H. Sun, P. Kurup, Z. Gu, "Fabrication and integration of metal oxide nanowire sensors using dielectrophoretic assembly and improved post-assembly processing", Sens. Actuators, B, Vol. 148, pp. 404-412, 2010. crossref(new window)

K. j. Choi, H. W. Jang, "One-dimensional oxide nanostructures as gas-sensing materials: review and issues", sensors, Vol. 10, pp. 4083-4099, 2010. crossref(new window)

T. Li, W. Zeng, Z. Wang, "Quasi-one-dimensional metaloxide-based heterostructural gas-sensing materials: a review", Sens. Actuators, B, Vol. 221, pp. 1570-1585, 2015. crossref(new window)

H. G. Moon, S. D. Han, M. G. Kang, W. S. Jung, B. J. Kwon, C. Kim, T. Lee, S. Lee, S. H. Baek, J. S. Kim, H. H. Park, C. Y. Kang, "Glancing angle deposited $WO_3$ nanostructures for enhanced sensitivity to $NO_2$ in gas mixture", Sens. Actuators B, Vol. 229, pp. 92-99, 2016. crossref(new window)

E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan and Z. L. Wang, "Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts", Appl. Phys. Lett., Vol. 81, pp. 1869-1871, 2002. crossref(new window)

K. Robbie, M. J. Brett, "Sculptured thin films and glancing angle deposition: Growth mechanics and applications", Vac. Sci. Technol. A, Vol. 15, pp 1460-1465, 1997.

M. M. Hawkeye, M. J. Brett, "Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films", J. Vac. Sci. Technol. A, Vol. 25, pp 1317-1335, 2007. crossref(new window)

L. Atzori, A. Iera and G. Morabito, "The internet of things: A survey", Comput. Netw., Vol. 54, pp. 2787-2805, 2010. crossref(new window)

N. Barsan, D. Koziej and U. Weimar, "Metal oxide-based gas sensor research: How to?", Sens. Actuators, B, Vol. 121, pp. 18-35, 2007. crossref(new window)

H. Nanto, H. Sokooshi and T. Kawai, "Aluminum-doped ZnO thin film gas sensor capable of detecting freshness of sea foods", Sens. Actuators, B, Vol. 14, pp. 715-717, 1993. crossref(new window)

N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuators, B, Vol. 108, pp. 2-14, 2005. crossref(new window)

R. Moos, R. Muller, C. Plog, A. Knezevic, H. Leye, E. Irion,T. Braun, K. J. Marquardt and K. Binder, "Selective ammonia exhaust gas sensor for automotive applications", Sens. Actuators, B, Vol. 83, pp. 181-189, 2002. crossref(new window)

J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, Future Gener., Internet of Things (IoT): A vision, architectural elements, and future directions", Comput. Syst., Vol. 29, pp. 1645-1660, 2013. crossref(new window)

D. Williams, "Semiconducting oxides as gas-sensitive resistors", Sens. Actuators, B, Vol. 57, pp. 1-16, 1999. crossref(new window)

G. Korotcenkov, "Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches", Sens. Actuators, B Vol. 107, pp. 209-232, 2005. crossref(new window)

C. X. Wang, L. W. Yin, L. Y. Zhang, D. Xiang and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors", Sensors, Vol. 10, pp. 2088-2106, 2010. crossref(new window)