JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Assessing Future Climate Change Impact on Hydrologic Components of Gyeongancheon Watershed
Ahn, So-Ra; Park, Min-Ji; Park, Geun-Ae; Kim, Seong-Joon;
  PDF(new window)
 Abstract
The impact on hydrologic components considering future potential climate, land use change and vegetation cover information was assessed using SLURP (Semi-distributed Land-Use Runoff Process) continuous hydrologic model. The model was calibrated (1999 - 2000) and validated (2001 - 2002) for the upstream watershed () of Gyeongancheon water level gauging station with the coefficient of determination and Nash-Sutcliffe efficiency ranging from 0.77 to 0.60 and 0.79 to 0.60, respectively. Two GCMs (MIROC3.2hires, ECHAM5-OM) future weather data of high (A2), middle (A1B) and low (B1) emission scenarios of the IPCC (Intergovernmental Panel on Climate Change) were adopted and the data was corrected by 20C3M (20th Century Climate Coupled Model) and downscaled by Change Factor (CF) method using 30 years (1977 - 2006, baseline period) weather data. Three periods data of 2010 - 2039 (2020s), 2040 - 2069 (2050s), 2070 - 2099 (2080s) were prepared. To reduce the uncertainty of land surface conditions, future land use and vegetation canopy prediction were tried by CA-Markov technique and NOAA NDVI-Temperature relationship respectively. MIROC3.2 hires and ECHAM5-OM showed increase tendency in annual streamflow up to 21.4 % for 2080 A1B and 8.9 % for 2050 A1B scenario respectively. The portion of future predicted ET about precipitation increased up to 3 % in MIROC3.2 hires and 16 % in ECHAM5-OM respectively. The future soil moisture content slightly increased compared to 2002 soil moisture.
 Keywords
SLURP;Land Use Change;Climate Change;GCMs;Downscaling;Hydrologic components;
 Language
Korean
 Cited by
1.
기후변화에 따른 대청호 유역의 물 순환 및 토양 유실량 영향,예령;정세웅;오동근;윤성완;

한국물환경학회지, 2009. vol.25. 6, pp.821-831
2.
SWAT 모형을 이용한 기후와 식생 활력도 변화가 수자원에 미치는 영향 평가,박민지;신형진;박종윤;강부식;김성준;

한국농공학회논문집, 2009. vol.51. 5, pp.25-34 crossref(new window)
3.
기후변화 및 도시화에 따른 유황곡선 및 BOD 농도지속곡선 변화,박경신;정은성;김상욱;이길성;

한국수자원학회논문집, 2009. vol.42. 12, pp.1091-1102 crossref(new window)
4.
<2009 SWAT-KOREA 컨퍼런스 특별호 논문> 기후변화가 충주댐 유역의 하천수질에 미치는 영향평가를 위한 유역 모델링,박종윤;박민지;안소라;김성준;

한국수자원학회논문집, 2009. vol.42. 10, pp.877-889 crossref(new window)
5.
기후변화에 따른 안동·임하호 유역의 부유사량 분석,이근상;김정열;안소라;심정민;

한국지리정보학회지, 2010. vol.13. 1, pp.1-15 crossref(new window)
6.
기후변동에 대한 한국 하천유량의 탄력성,정일원;장희준;배덕효;

한국수자원학회논문집, 2010. vol.43. 10, pp.851-864 crossref(new window)
7.
기후변화를 고려한 소규모 하수처리장 건설에 대한 영향 분석,박경신;정은성;김상욱;이길성;

한국물환경학회지, 2010. vol.26. 2, pp.268-278
8.
SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가,박민지;신형진;박근애;김성준;

대한토목학회논문집, 2010. vol.30. 4B, pp.337-346
9.
기후변화가 짐바브웨 옥수수 수확량에 미치는 영향 모의,은코모제피 템바;정상옥;

한국농공학회논문집, 2011. vol.53. 3, pp.65-73 crossref(new window)
10.
기후변화가 짐바브웨 옥수수 필요수량에 미치는 영향 평가,은코모제피 템바;정상옥;

한국농공학회논문집, 2011. vol.53. 1, pp.47-55 crossref(new window)
11.
기후변화를 고려한 홍수취약성지표의 개발,손민우;성진영;정은성;전경수;

한국수자원학회논문집, 2011. vol.44. 3, pp.231-248 crossref(new window)
12.
GCM과 수문모형의 불확실성을 고려한 기후변화에 따른 한반도 미래 수자원 전망,배덕효;정일원;이병주;이문환;

한국수자원학회논문집, 2011. vol.44. 5, pp.389-406 crossref(new window)
13.
기후 변화에 따른 제주도 표선 유역의 함양률 및 수위변화 예측,신에스더;고은희;하규철;이은희;이강근;

한국지하수토양환경학회지:지하수토양환경, 2016. vol.21. 6, pp.22-35 crossref(new window)
14.
SWAT 모형을 이용한 미래 기후변화가 설마천 혼효림 유역의 증발산과 토양수분에 미치는 영향 평가,안소라;박근애;장철희;김성준;

한국수자원학회논문집, 2013. vol.46. 6, pp.569-583 crossref(new window)
15.
RCP 기후변화 시나리오를 고려한 금강유역의 미래 용수공급 변화전망,노선희;정관수;박진혁;류경식;

한국수자원학회논문집, 2013. vol.46. 5, pp.505-517 crossref(new window)
16.
기후변화가 주암호 수온성층구조에 미치는 영향 예측,윤성완;박관영;정세웅;강부식;

한국물환경학회지, 2014. vol.30. 5, pp.491-502 crossref(new window)
17.
멀티프랙탈 시·공간 격자강우량 생산기법의 수문학적 적용성 평가 : 충주댐상류유역 중심으로,송호용;김동균;김병식;황석환;김태웅;

한국수자원학회논문집, 2014. vol.47. 10, pp.959-972 crossref(new window)
18.
기후변화에 따른 황룡강 유역의 오염부하 유출량 변화 분석,박민혜;조홍래;구본경;

한국수자원학회논문집, 2015. vol.48. 3, pp.185-196 crossref(new window)
19.
기후변화와 토지이용변화가 도시화 진행 유역수문에 미치는 영향 평가,안소라;장철희;이준우;김성준;

대한토목학회논문집, 2015. vol.35. 3, pp.567-577 crossref(new window)
20.
기후변화 시나리오 편의보정 기법에 따른 강우-유출 특성 분석,금동혁;박윤식;정영훈;신민환;류지철;박지형;양재의;임경재;

한국물환경학회지, 2015. vol.31. 3, pp.241-252 crossref(new window)
21.
Entropy를 이용한 기후모형 모의결과 편차보정 검증,이재경;김영오;

한국방재학회 논문집, 2015. vol.15. 5, pp.25-35 crossref(new window)
1.
Assessment of Climate Change Impact on Evapotranspiration and Soil Moisture in a Mixed Forest Catchment Using Spatially Calibrated SWAT Model, Journal of Korea Water Resources Association, 2013, 46, 6, 569  crossref(new windwow)
2.
Watershed Modeling for Assessing Climate Change Impact on Stream Water Quality of Chungju Dam Watershed, Journal of Korea Water Resources Association, 2009, 42, 10, 877  crossref(new windwow)
3.
Effect of Climate Change and Urbanization on Flow and BOD Concentration Duration Curves, Journal of Korea Water Resources Association, 2009, 42, 12, 1091  crossref(new windwow)
4.
Assessing the Effects of Climate Change on Irrigation Water Requirement for Corn in Zimbabwe, Journal of The Korean Society of Agricultural Engineers, 2011, 53, 1, 47  crossref(new windwow)
5.
Assessment of Climate and Vegetation Canopy Change Impacts on Water Resources using SWAT Model, Journal of The Korean Society of Agricultural Engineers, 2009, 51, 5, 25  crossref(new windwow)
6.
Assessment of Climate and Land Use Change Impacts on Watershed Hydrology for an Urbanizing Watershed, Journal of the Korean Society of Civil Engineers, 2015, 35, 3, 567  crossref(new windwow)
7.
Verification of Bias Corrected Simulations of Climate Models Using Entropy, Journal of Korean Society of Hazard Mitigation, 2015, 15, 5, 25  crossref(new windwow)
8.
The relative impacts of climate change and urbanization on the hydrological response of a Korean urban watershed, Hydrological Processes, 2011, 25, 4, 544  crossref(new windwow)
9.
Projection of the Climate Change Effects on the Vertical Thermal Structure of Juam Reservoir, Journal of Korean Society on Water Environment, 2014, 30, 5, 491  crossref(new windwow)
10.
Future Korean Water Resources Projection Considering Uncertainty of GCMs and Hydrological Models, Journal of Korea Water Resources Association, 2011, 44, 5, 389  crossref(new windwow)
11.
Simulation of the Effects of Climate Change on Yield of Maize in Zimbabwe, Journal of The Korean Society of Agricultural Engineers, 2011, 53, 3, 65  crossref(new windwow)
12.
Water Supply Change Outlook for Geum River Basin Considering RCP Climate Change Scenario, Journal of Korea Water Resources Association, 2013, 46, 5, 505  crossref(new windwow)
13.
Hydrological Assessment of Multifractal Space-Time Rainfall Downscaling Model: Focusing on Application to the Upstream Watershed of Chungju Dam, Journal of Korea Water Resources Association, 2014, 47, 10, 959  crossref(new windwow)
14.
Development of spatial water resources vulnerability index considering climate change impacts, Science of The Total Environment, 2011, 409, 24, 5228  crossref(new windwow)
15.
Probabilistic estimation of the storage capacity of a rainwater harvesting system considering climate change, Resources, Conservation and Recycling, 2012, 65, 136  crossref(new windwow)
16.
Nn Evaluation of Climate Change Effects on Pollution Loads of the Hwangryong River Watershed in Korea, Journal of the Korean Water Resources Association, 2015, 48, 3, 185  crossref(new windwow)
17.
Analysis of Rainfall-Runoff Characteristics on Bias Correction Method of Climate Change Scenarios, Journal of Korean Society on Water Environment, 2015, 31, 3, 241  crossref(new windwow)
 References
1.
기상연구소 (2004). 기후변화엽학 대응 지역기후시나리오 활용기술개발(III), 기상연구소

2.
김병식, 김형수, 서병하, 김남원 (2004). “기후변화가 용담댐 유역의 유출에 미치는 영향.” 한국수자원학회논문집, 한국수자원학회지, 제37권, 제2호, pp. 185-193 crossref(new window)

3.
김성준 (2002) “수자원 분포의 시공간적 변동.” 한국농림기상학회지, 한국농림기상학회, 제4권, 제3권, pp. 175-196

4.
배덕효, 정일원 (2005). “기후변화에 따른 수자원 영향 평가.“ 방재정보, 한국방재협회, 제21호, pp. 16-22

5.
안소라, 이용준, 박근애, 김성준 (2008). “미래토지이용 및 기후변화에 따른 하천유역의 유출특성 분석.” 대한토목학회논문집, 대한토목학회, 제28권, 제2B호, pp. 215-224

6.
안재현, 유철상, 윤용남 (2001). “GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석.” 한국수자원학회논문집, 한국수자원학회, 제34권, 제4호, pp. 335-345

7.
유철상, 이동률 (2000). “기후변화와 수자원: 국내의 연구동향.” 한국수자원학회논문집, 한국수자원학회, 제33권 3호, pp. 42-47

8.
이용준, 김성준 (2007). 미래 토지이용변화 예측을 위한 개선된 CA-Markov 기법의 제안 및 적용, 대한토목학회논문집, 대한토목학회, 제27권, 제6D호, pp. 809-817

9.
Ahn, S.R., Ha, R., Lee, Y.J., Park, G.A., and Kim, S.J. (2008). “Evaluation of future climate change impact on Gyeongancheon Watershed using SLURP hydrological model.” Korean Journal of Remote Sensing. Vol. 24, No. 1, pp. 45-55

10.
Andersson, L., Wilk, J., Todd, M.C., Hughes, D.A., Earle, A., Kniveton, D., Layberry, R., and Savenije. H.G. (2006). "Impact of climate change and development scenarios on flow patterns in the Okavango River." Journal of Hydrology. Vol. 331, pp. 43-57 crossref(new window)

11.
Carter, T.R., Hulme, M., and Lal, M. (1999). IPCC-TGCIA Guidelines on the use of scenario data for climate impact and adaptation assessment, version 1, IPCC, Task Group on Scenarios for Impact Assessment

12.
Diaz-nieto, J., and Wilby, R.L. (2005). "A comparision of statistical downscaling and climate change factor methods impacts on low flows in the River Thames." Climatic Change. Vol. 69, pp. 245-268 crossref(new window)

13.
Doogers, P., and Aerts, J. (2005). "Adaptation strategies to climate change and climate variability: A comparative study between seven contrasting river basins." Physics and Chemistry of he earth. Vol. 30, pp. 339-346 crossref(new window)

14.
Duan, Q., Sorooshian, S.S., and Gupta, V.K. (1994). "Optimal use of the SCE-UA global optimization method for calibrating watershed models." Journal of Hydrology, Vol. 158, pp. 265-284 crossref(new window)

15.
Garbrecht, J. and Martz, L.W. (1997). TOPAZ Version 1.20: An automated digital landscape analysis tool for topographic evaluation, drainage identification, watershed segmentation and subcatchment parameterization - Overview. Rep.# GRL 97-2, Grazinglands Research Laboratory, USDA, Agricultural Research Service, El Reno, Oklahoma, pp. 21

16.
IPCC. (2001). Climate Change 2001: The Scientific Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

17.
IPCC. (2007). Climate Change 2007: The Physical Science Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S.,D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (Eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

18.
IPCC.-TGCLA (1999). Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment, Version 1. Prepared by Carter, T. R., M. Hulme, and M. Lal, Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate Impact Assessment, pp. 69

19.
Kendall, M.G. (1975). Rank Correlation Methods. Griffin, London

20.
Kite, G.W. (1975). "Performance of two deterministic hydrological models." IASH-AISH Publication, Vol. 115, pp. 136-142

21.
Kite, G.W. (1998) "Land surface parameterizations of GCMs and macroscale hydrological models." Journal American Water Resources Association, Vol. 34, No. 6, pp. 1247-1254 crossref(new window)

22.
Kite, G.W. (1993). "Application of a land class hydrological model to climatic change." Water Resources Research, Vol. 29, No. 7, pp. 2377-2384 crossref(new window)

23.
Kite, G.W., Ellehoj, E., and Dalton, A. (1996). GIS for large-scale watershed modelling, in Geographical Information Systems in Hydrology. Singh, V.P.; Fiorentino, M (eds). Kluwer Academic Publishers, Netherlands

24.
Mann, H.B., (1945). Nonparametric tests against trend. Econometrica. Vol. 13, pp. 245-259 crossref(new window)

25.
Merritt, W.S., Alila, Y., Barton, M., Taylor, B., Cohen, S., and Neilsen. D. (2006). "Hydrologic response to scenario of climate change in sub watersheds of the Okanagan basin, British Columbia." Journal of Hydrology. Vol. 326, pp. 79-108 crossref(new window)

26.
Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models; Part 1 - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290 crossref(new window)

27.
Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., and Harlan, J.C. (1974). Monitoring the vernal advancement of natural vegetation. NASA Goddard Space Flight Center, Greenbelt, MD, Final Rep.

28.
Sefton, C.E.M., and Boorman, D.B. (1997). “A Resinal Investigation of Climate Change Impacts on UK Streamflows.” Journal of Hydrology, Vol. 195, pp. 26-44 crossref(new window)

29.
Snell, S.E., Gopal, S., and Kaufmann. R.K. (2000). "Spatial interpolation of surface air temperatures using artificial neural networks: Evaluating their use for downscaling GCMs." Journal of Climate. Vol. 13, No. 5, pp. 886-895 crossref(new window)

30.
Viner, D., and Mayer, L. (1994). Climate Change Scenarios of Impact Studies in the UK, Report, Contract No PECD 7/12/96, CRU, Norwich, University of East Anglia

31.
Wilby, R.L., and Harris, I. (2006). "A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames." Water Resources Research. Vol. 42, pp. 1-10 crossref(new window)

32.
Zhang, X., Srinivasan, R., and Hao, F. (2007). "Predicting hydrologic response to climate change in the Luohe River Basin using the SWAT model." ASAE. Vol. 50, No. 3, pp. 901-910

33.
Zhou, L., Dickinson, R. E., Tian, Y., Zeng, X., Dai, Y., Yang, Z. L., Schaaf. C. B., Gao, F., Jin, Y., Strahler, A., Myneni, R.B., Yu, H., and Shaikh. M. (2003). "Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model." Journal of Geophysical Research. Vol. 108, No. 15, pp. 1-20 crossref(new window)