Advanced SearchSearch Tips
Spatiotemporal Data Visualization using Gravity Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of KIISE
  • Volume 43, Issue 2,  2016, pp.135-142
  • Publisher : Korean Institute of Information Scientists and Engineers
  • DOI : 10.5626/JOK.2016.43.2.135
 Title & Authors
Spatiotemporal Data Visualization using Gravity Model
Kim, Seokyeon; Yeon, Hanbyul; Jang, Yun;
Visual analysis of spatiotemporal data has focused on a variety of techniques for analyzing and exploring the data. The goal of these techniques is to explore the spatiotemporal data using time information, discover patterns in the data, and analyze spatiotemporal data. The overall trend flow patterns help users analyze geo-referenced temporal events. However, it is difficult to extract and visualize overall trend flow patterns using data that has no trajectory information for movements. In order to visualize overall trend flow patterns, in this paper, we estimate continuous distributions of discrete events over time using KDE, and we extract vector fields from the continuous distributions using the gravity model. We then apply our technique on twitter data to validate techniques.
data visualization;spatiotemporal data;kernel density estimation;gravity model;twitter data;
 Cited by
시각적 분석을 위한 응용 소프트웨어,유상봉;연한별;김석연;정성민;피민규;정대교;백희원;장윤;

정보과학회지, 2016. vol.34. 11, pp.8-21
D. J. Peuquet and M.-J. Kraak, Geobrowsing: creative thinking and knowledge discovery using geographic visualization, Information Visualization, 1:80-91, 2002. crossref(new window)

C. Tominski, P. Schulze-Wollgast, and H. Schumann, 3d information visualization for time dependent data on maps, Proc. of the International Conference on Information Visualisation, pp. 175-181, 2005.

R. Maciejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout, M. Ouzzani, W. Cleveland, S. Grannis, and D. Ebert. A visual analytics approach to understanding spatiotemporal hotspots, IEEE Trans. on Visualization and Computer Graphics, 16(2):205-220, 2010. crossref(new window)

T. Hagerstrand, What about people in Regional Science? Papers in Regional Science, 24(1):6-21, Dec. 1970. crossref(new window)

D. Guo, Flow mapping and multivariate visualization of large spatial interaction data, IEEE Trans. on Visualization and Computer Graphics, 15(6):1041-1048, 2009. crossref(new window)

W. Luo, A. M. MacEachren, P. Yin, and F. Hardisty, Spatial-social network visualization for exploratory data analysis, Proc. of the ACM SIG-SPATIAL International Workshop on Location-Based Social Networks, pp. 3:1-3:4. ACM, 2011.

B. Cabral, L. C. Leedom, Imaging vector fields using line integral convolution, Proc. of the Conference on Computer Graphics and Interactive Techniques, pp. 263-270. 1993.

R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and D. Weiskopf, The state of the art in flow visualization: Dense and texturebased techniques, Computer Graphics Forum, 23, 2004.

R. S. Laramee, G. Erlebacher, C. Garth, T. Schafhitzel, H. Theisel, X. Tricoche, T. Weinkauf, and D. Weiskopf, Applications of texturebased flow visualization, Engineering Applications of Computational Fluid Mechanics (EACFM), 2(3):264-274, Sep. 2008. crossref(new window)

Z. Liu, S. Cai, J. Swan II, R. Moorhead II, J. Martin, and T. JankunKelly, A 2d flow visualization user study using explicit flow synthesis and implicit task design, IEEE Trans. on Visualization and Computer Graphics, PP(99):1, 2011.

Seokyeon Kim, Hanbyul Yeon, Jong-Weon Lee, Yun Jang, Migration Analysis within Korea using Spatio- temporal Data Visualization, Proc. of the KIISE Korean Computer Congress 2014, 1316-1318 (3 pages), 2014.

J. E. Anderson, The gravity model, Working Paper 16576, National Bureau of Economic Research, 2010.

J. M. Barrios, W. W. Verstraeten, P. Maes,. M. Aerts, J. Farifteh, and P. Coppin, Using the gravity model to estimate the spatial spread of vectorborne diseases, International Journal of Environmental Research and Public Health, 9(12):4346-4364, 2012. crossref(new window)

Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, Mining interesting locations and travel sequences from gps trajectories, Proc. of the 18th international Conference on World Wide Web, pp. 791-800, 2009.