JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Information Seeking Behavior of Shopping Site Users: A Log Analysis of Popshoes, a Korean Shopping Search Engine
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Information Seeking Behavior of Shopping Site Users: A Log Analysis of Popshoes, a Korean Shopping Search Engine
Park, Soyeon; Cho, Kihun; Choi, Kirin;
  PDF(new window)
 Abstract
This study aims to investigate information seeking behavior of Popshoes users. Transaction logs of Popshoes, a major Korean shopping search engine, were analyzed. These transaction logs were collected over 3 months period, from January 1 to March 31, 2015. The results of this study show that Popshoes users behave in a simple and passive way. In the total sessions, more users chose to browse a directory than typing and submitting a query. However, queries played a more crucial role in important decision makings such as search results clicks and product purchases than directory browsing. The results of this study can be implemented to the effective development of shopping search engines.
 Keywords
information seeking behavior;shopping searching;log analysis;
 Language
Korean
 Cited by
 References
1.
남길임, 박진양 (2005). 온라인 사전의 로그 파일(log file) 분석을 통한 사전 검색 양상 연구. 한국사전학, 6, 87-104. Nam, Kil-Im, & Park, Jin-Yang (2005). A study on the log file of Korean online dictionary. Journal of Korealex, 6, 87-104.

2.
박소연, 이준호 (2002). 로그 분석을 통한 이용자의 웹 문서 검색 행태에 관한 연구. 정보관리학회지, 19(3), 111-122. Park, Soyeon & Lee, Joon-Ho (2002). Investigating Web search behavior via query log analysis. Journal of the Korean Society for Information Management, 19(3), 111-122.

3.
박소연, 이준호, 김지승 (2005). 클릭 로그에 근거한 네이버 검색 질의의 형태 및 주제 분석. 한국문헌정보학회지, 39(1), 265-278. Park, Soyeon, Lee, Joon-Ho & Kim, Ji Seoung (2005). An analysis of query types and topics submitted to Naver. Journal of the Korean Society for Library and Information Science, 39(1), 265-278.

4.
박종석, 한상만, 김윤식 (2003). 밀착도 및 상호관계가 온라인 구매에 미치는 영향: 쇼핑몰을 중심으로. 마케팅 연구, 18(2), 69-93. Park, Jongseuk, Han, Sangman, & Kim, Yunsik (2003). The effect of relationship between stickiness and inertia on online purchase: In shopping mall site. Journal of Korean Marketing Association, 18(2), 69-93.

5.
이동일, 김현교 (2013). 개인검색기반 키워드광고 구매전환모형 개발. 한국경영과학회지, 38(1), 123-138. Lee, Dong Il, & Kim, Hyun Gyo (2013). Developing the purchase conversion model of the keyword advertising based on the individual search. Journal of the Korean Operations Research and Management Science Society, 38(1), 123-138.

6.
이성숙 (2012). 트랜잭션 로그 분석을 통한 웹기반 온라인목록의 검색행태 추이 분석. 한국비블리아학회지, 23(2), 209-233. http://dx.doi.org/10.14699/kbiblia.2012.23.2.209 Lee, Sung-Sook (2012). Trends of Web-based OPAC search behavior via transaction log analysis. Journal of the Korean Biblia Society for Library and Information Science, 23(2), 209-233. http://dx.doi.org/10.14699/kbiblia.2012.23.2.209

7.
이수상, 위성광 (2009). 디지털 도서관 이용자의 검색행태 연구: 검색 로그 데이터의 네트워크 분석을 중심으로. 한국도서관․정보학회지, 40(4), 139-158. Lee, Soo-Sang, & Wei, Cheng-Guang (2009). A study on the search behavior of digital library users: Focus on the network analysis of search log data. Journal of Korean Library and Information Science Society, 40(4), 139-158.

8.
이준호, 박소연, 권혁성 (2003). 질의 로그 분석을 통한 네이버 이용자의 검색 행태 연구. 정보관리학회지, 20(2), 27-40. http://dx.doi.org/10.3743/KOSIM.2003.20.2.027 Lee, Joon-Ho, Park, Soyeon, & Kwon, Hyuk-Sung (2003). Information seeking behavior of the NAVER users via query log analysis. Journal of the Korean Society for Information Management, 20(2), 27-40. http://dx.doi.org/10.3743/KOSIM.2003.20.2.027

9.
조경원, 우영운 (2005). 웹로그 분석을 통한 의약품 정보 검색 주제별 이용 패턴에 관한 연구. 한국콘텐츠학회 2005 추계 종합학술대회 논문집, 3(2), 269-274. Cho, Kyoung-Won, & Woo, Young-Woon (2005). A study on the usage patterns of medicine information through web log analysis. Proceedings of 2005 Society of the Korea Contents Association, 3(2), 269-274.

10.
통계청 (2015). 온라인 쇼핑 동향. Retrieved from http://kosis.kr Statistics Korea (2015). Report of online shopping survey. Retrieved from http://kosis.kr

11.
한국정보통신기술협회 (2015). IT 용어 사전. Retrieved from http://terms.naver.com Telecommunications Technology Association (2015). IT Glossary. Retrieved from http://terms.naver.kr

12.
Cacheda, F., & Vina, A. (2001). Experiences retrieving information in the World Wide Web. In K. Jeffay, & R. Steinmetz (Eds.), Proceedings of the 6th IEEE Symposium on Computers and Communications (72-79). Piscataway, NJ: IEEE.

13.
Han, H., Joo, S., & Dietmar, W. (2014). Using transaction logs to better understand user search session patterns in an image-based digital library. Journal of the Korean Biblia Socitey for Library and Information Science, 25(1), 19-37. crossref(new window)

14.
Jansen, B. J. (2006). Search log analysis: What is it; What's been done; How to do it. Library and Information Science Research, 28(3), 407-432. crossref(new window)

15.
Jansen, B. J., & Spink, A. (2005). An analysis of Web searching by European AlltheWeb.com users. Information Processing and Management, 41(2), 361-381. crossref(new window)

16.
Jansen, B. J., Spink, A., & Koshman, S. (2007). Web searcher interaction with the Dogpile.com metasearch engine. Journal of the American Society for Information Science and Technology, 58(5), 744-755. crossref(new window)

17.
Jansen, B. J., Spink, A., & Saracevic, T. (2000). Real life, real users, and real needs: A study and analysis of user queries on the web. Information Processing and Management, 36(2), 207-227. crossref(new window)

18.
Koshman, S., Spink, A., & Jansen, B. J. (2006). Web searching on the Vivisimo search engine. Journal of the American Society for Information Science and Technology, 57(14), 1875-1887. crossref(new window)

19.
Lee, J. Y., & Paik, W. (2006). Analysis of Korean patent & trademark retrieval query log to improve retrieval and query reformulation efficiency. Journal of the Korean Society for Information Management, 23(2), 61-80. crossref(new window)

20.
Park, S. (2009). Analysis of characteristics and trends of Web queries submitted to NAVER, a major Korean search engine. Library and Information Science Research, 31(2), 126-133. crossref(new window)

21.
Reng, Y., Tomko, M., Salim, F. D., Ong, K., & Sanderson, M. (2015). Analyzing Web behavior in indoor retail spaces. Journal of the American Society for Information Science and Technology. DOI: 10.1002/asi.23587 crossref(new window)

22.
Silverstein, C., Henzinger, M., Marais, H., & Moricz, M. (1999). Analysis of a very large Web search engine query log. SIGIR Forum, 33(1), 6-12. crossref(new window)

23.
Spink, A., & Jansen, B. J. (2008). Trends in searching for commerce related information on Web search engines. Journal of Electronic Commerce Research, 9(2), 154-161.

24.
Spink, A., Jansen, B. J., Wolfram, D., & Saracevic, T. (2002). From e-sex to e-commerce: Web search changes. IEEE Computer Society, 35(3), 133-135. crossref(new window)

25.
Spink, A., Wolfram, D., Jansen, M. B. J., & Saracevic, T. (2001). Searching the Web: The public and their queries. Journal of the American Society for Information Science and Technology, 52(3), 226-234. crossref(new window)

26.
Uetsuji, K., Yanagimoto, H., & Yoshioka, M. (2015). User intent estimation from access logs with topic model. Procedia Computer science, 60, 141-149. crossref(new window)