Advanced SearchSearch Tips
A Study on Scientific Article Recommendation System with User Profile Applying TPIPF
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on Scientific Article Recommendation System with User Profile Applying TPIPF
Zhang, Lingling; Chang, Woo Kwon;
  PDF(new window)
Nowadays users spend more time and effort to find what they want because of information overload. To solve the problem, scientific article recommendation system analyse users` needs and recommend them proper articles. However, most of the scientific article recommendation systems neglected the core part, user profile. Therefore, in this paper, instead of mean which applied in user profile in previous studies, New TPIPF (Topic Proportion-Inverse Paper Frequency) was applied to scientific article recommendation system. Moreover, the accuracy of two scientific article recommendation systems with above different methods was compared with experiments of public dataset from online reference manager, CiteULike. As a result, the proposed scientific article recommendation system with TPIPF was proven to be better.
scientific article recommendation system;article profile;user profile;TPIPF;content-based filtering;LDA;
 Cited by
박상진, 김윤현, 이지현 (2011). 인용논문 분석을 통한 학술 문서 추천 시스템. 한국정보처리학회 춘계학술발표대회 논문집, 18(1), 279-282.(Park, Sang Jin, Kim, Yoon Hyun, & Lee, Ji-Hyun (2011). A recommender of academic papers using the citation analysis. The 35th Conferences of the KIPS, 18(1), 279-282.)

여운동, 박현우, 권영일, 박영욱 (2010). 연구논문 추천시스템의 전자도서관 적용방안. 한국콘텐츠학회논문지, 10(11), 10-19., Woon-Dong, Park, Hyun-Woo, Kwon, Young-Il, & Park, Young-Wook (2010). Application of research paper recommender system to digital library. The Korean Contents Society, 10(11), 10-19.

최호연, 신동옥, 최중민, 김정선 (2013). 전자 도서관 도메인에서 의미적 관계를 이용한 개인화된 논문추천 시스템. 정보과학회논문지: 소프트웨어 및 응용, 40(3), 164-175.(Choi, Hoyeon, Shin, Dongwook, Choi, Joongmin, & Kim, Jungsun (2013). PARuS: Personalized academic paper recommender using semantic relation in digital library domain. Journal of KISS: Software and Applications, 40(3), 164-175.)

Beel, J., Langer, S., Genzmehr, M., & Nürnberger, A. (2013). Introducing docear's research paper recommender system. Proceedings of the 13th ACM/IEEECS Joint Conference on Digital Libraries, 459-460. crossref(new window)

Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of science. The Annals of Applied Statistics, 1(1), 17-35. crossref(new window)

Blei, D. M., & Lafferty, J. D. (2009). Topic models. In A. Srivastava & M. Sahami (eds.), Text mining: classification, clustering, and applications. Chapman & Hall/CRC Press.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993-1022.

Bogers, T., & van den Bosch, A. (2008). Recommending scientific articles using CiteULike. Proceedings of the 2008 ACM Conference on Recommender Systems, 287-290.

Burke, R. (2002). Hybrid recommender systems: survey and experiments. User Modeling and User-Adapted Interaction, 12(4), 331-370. crossref(new window)

Chandrasekaran, K., Gauch, S., Lakkaraju, P., & Luong, H. (2008). Concept-based document recommendations for Citeseer authors. Proceedings of the 5th International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, 83-92.

Choochaiwattana, W. (2010). Usage of tagging for research paper recommendation. Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 439-442.

CiteULike (2016). dataset. Retrieved from

Ferrara, F., Pudota, N., & Tasso, C. (2011). A keyphrase-based paper recommender system. Proceedings of Italian Research Conference (IRCDL 2011), 14-25. crossref(new window)

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101, 5228-5235.

Grun, B., & Hornik, K. (2011). Topicmodels: An R package for fitting topic models. Journal of Statistical Software, 40(13), 1-30.

He, Q., Pei, J., Kifer, D., Mitra, P., & Giles, L. (2010). Context-aware citation recommendation. Proceedings of the 19th International Conference on World Wide Web, 421-430. crossref(new window)

Henning, V., & Reichelt, J. (2008). Mendeley-a for Research? IEEE Fourth International Conference on eScience, 327-328.

Hornik, K., & Gruen, B. (2011). Topicmodels: an R package for fitting topic models. Journal of Statistical Software, 40(13), 1-30. Topicmodels: an R package for fitting topic models.

Huang, W., Kataria, S., Caragea, C., Mitra, P., Giles, C. L., & Rokach, L. (2012). Recommending citations: translating papers into references. Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 1910-1914.

Hwang, S., & Chuang, S. (2004). Combining article content and Web usage for literature recommendation in digital libraries. Online Information Review, 28(4), 260-272. crossref(new window)

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: with applications in R. Springer.

Jiang, Y., Jia, A., Feng, Y., & Zhao, D. (2012). Recommending academic papers via users' reading purposes. Proceedings of the 6th ACM Conference on Recommender Systems, 241-244.

Liang, T., Yang, Y., Chen, D., & Ku, Y. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, 45(3), 401-412. crossref(new window)

Lops, P., de Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: state of the art and trends. In F. Ricci, L. Rokach, B. Shapria & K. Paul (Eds.). Recommender systems handbook (pp. 73-105). Springer.

Middleton, S. E., De Roure, D. C., & Shadbolt, N. R. (2001). Capturing knowledge of user preferences: ontologies in recommender systems. Proceedings of the 1st International Conference on Knowledge Capture (K-CAP 2001), 100-107. crossref(new window)

Pudhiyaveetil, A., Kodakateri, G. S., Luong, H., & Eno, J. (2009). Conceptual recommender system for CiteSeerX. Proceedings of the third ACM Conference on Recommender Systems, 241-244. crossref(new window)

Sarkar, Deepayan (2008). Lattice: Multivariate data visualization with R. New York: Springer.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, 285-295. crossref(new window)

Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In F. Ricci, L. Rokach, B. Shapria & K. Paul (Eds.). Recommender Systems Handbook (pp. 257-297). Springer.

Sugiyama, K., & Kan, M. (2010). Scholarly paper recommendation via user's recent research interests. Proceedings of Joint Conference of Digital Libraries. Gold Coast, 29-38. crossref(new window)

Torres, R., McNee, S. M., Abel, M., Konstan, J. A., & Riedl, J. (2004). Enhancing digital libraries with Techlens+. Proceedings of the 4th ACM/IEEE-CS Joint Conference on Digital Libraries, 228-236. crossref(new window)

Vellino, A. (2010). A comparison between usage-based and citation-based methods for recommending scholarly research articles. Proceedings of the American Society for Information Science and Technology, 1-2. crossref(new window)

Wallach, H. M. (2008). Structured topic models for language. Ph.D. diss. University of Cambridge, UK.