JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Kinetics on the Reaction of Substituted Quinolines and p-Substituted Benzoylchlorides under Various Pressures
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Kinetics on the Reaction of Substituted Quinolines and p-Substituted Benzoylchlorides under Various Pressures
Jong-Wan Lim; Se-Kyong Kim;
  PDF(new window)
 Abstract
The reaction rates of substituted quinolines (6-Clqui., qui.) with p-substituted benzoylchlorides have been measured by conductometry in acetonitrile, and the rate constants are determined at various temperatures (10, 15, 20, ) and pressures (1, 200, 500, 1000 bar). From the values of rate constants, the activation parameters and the pressure dependence of Hammett ρ values were determined. The rate constants increased with increasing temperatures and pressures, and are further increased to introduction to the electron acceptor substituents in substrate with quinoline. The activation volume and the activation entropy are all negative. And the Hammett p values are negative for nucleophile and positive for the substrate over the pressure range studied. The results of kinetic studies for pressure and substituent show that these reactions proceed through a typical reaction mechanism and "associative " favoring bond formation with increasing pressures.
 Keywords
Pressure; Thermodynamics; Kinetics;
 Language
Korean
 Cited by
1.
친핵성치환반응에서 압력과 온도변화에 따른 친핵체 효과,김세경;최성용;고영신;

대한화학회지, 2004. vol.48. 5, pp.461-466 crossref(new window)
 References
1.
Arnett, E.M.; Reich, J. Am. Chem. Soc. 1980, 102, 5892. crossref(new window)

2.
Glasstone, S.; Laidler, K.J.; Eyring, H. “The theory ofRate Processes,” McGraw-Hill, N.Y., 1941, p. 418.

3.
Hyne, J. B. J. Am. Chem. Soc. 1966, 88, 2104. crossref(new window)

4.
Kondo, Y.; Tojima, H.; Tokura N. Bull. Chem. Soc.Japan 1972, 45, 3579. crossref(new window)

5.
Evans, M. G.; Polanyi M. Trans. Faraday Soc. 1935,31, 875. crossref(new window)

6.
Dickson, S.J.; Hyne, J. B. Can. J. Chem., 1971, 49,2394. crossref(new window)

7.
Guggenheim, E. A. Phil. Mag. 1926, 2, 538. crossref(new window)

8.
Menschutkin, N. Z. Phys. Chem. 1890, 5, 589.

9.
Moelyn-Hughes, Kinetics in Solutions, 1947; p338.

10.
Whalley, E. Advances in Physical Organic Chemistry,2nd Ed.; Academic Press:N.Y. 1964; p. 93.

11.
A. Sera, A.; Miyazawa, T.; Matsuda, Y.; Togawa, Y.;Maruyama,K. Bull. Chem. Soc. Japan, 1973, 46, 3490. crossref(new window)

12.
Lenoble, W. J.; Yates, B.L.; Scaplehorn, A. W. J. Am.Chem. Soc. 1967, 89, 3751. crossref(new window)

13.
Asano, T.; LeNoble, W. J. Chem. Rev. 1978, 407.

14.
Leffler, J. E.; Grunwald, E. Rate and Equilibria of Org.Reaction, John Wiley and Sons: N.Y. 1963; p327

15.
Harned, H. S.; Owen, B. B. Physical Chemistry ofElectrolyticSolution, 3rd Ed, Reinhold: New York,1958; p369.

16.
Weale, K. Chemical Reactions at High Pressures 1967,Spon, London.

17.
Eckert, C. Rep. Prog. Phys. Chem. 1972, 23, 239.

18.
Jenner, G. Angew. Chem. Int. Ed. 1975, 14, 137. crossref(new window)

19.
Rogne, O. J. Chem. Soc(B). 1969, 1294.

20.
Lee, I.; Kim, N.I.; Sohn, S.C. Tetrahedron Lett. 1983,23, 4723.