JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Prediction of Vapor Pressure of the Inert Gases
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Prediction of Vapor Pressure of the Inert Gases
Chung, Jaygwan-G.;
  PDF(new window)
 Abstract
Experimental vapor pressure measurements available in the literature for the inert gases have been rigorously analyzed and used to evaluate the constants A, B, C, D, and exponent of the following equation in the form of reduced vapor pressure and reduced temperature : According to varying exponent n all four constants have been obtained for the inert gases by the error analysis. This has provided us the best n and four constants for each of the inert gases ; Argon, krypton, xenon, helium, and neon. In order to obtain the calculated vapor pressure by the above equation, only the normal boiling point and the critical pressure and critical temperature are necessary to get the vapor pressure for an overall average deviation of 0.31 % for 406 experimental vapor pressure points consisting of five gases available in the literature. The average deviation for argon, krypton, and xenon is 0.24%, 0.09%, and 0.22%, respectively, for neon 1.31% and for helium 0.61%. These results are not unexpected in view of the significant quantum effects associated with helium and to a lesser degree with neon.
 Keywords
Vapor Pressure;Argon;Krypton;Xenon;Helium;Neon;Simulation;
 Language
Korean
 Cited by
 References
1.
Frost, A. A.; Kalkwarf, D. R. J. Chem. Phys., 1953, 21, 264. crossref(new window)

2.
Chung, J. G.; Thodos, G. Chem. Eng. J.(Netherlands), 1976, 12, 219.

3.
Berman, R.; Swenson, C. A. Phys. Rev., 1954, 95, 311. crossref(new window)

4.
Schmidt, G.; Keesom, W H. Physica, 1937, 4, 971. crossref(new window)

5.
Kamerlingh Onnes, H. Communs. Phys. Lab. University Leiden, 1911, No. 124b, 11.

6.
Cath, P. G.; Kamerlingh Onnes, H. Communs. Phys. Lab. University Leiden, 1921, No.152b, 21.

7.
Crornmelin, C. A. Communs. Phys. Lab. University Leiden, 1923, No. 162c, 23.

8.
Ancsin, J. Metrologia, 1973, 9, 147. crossref(new window)

9.
Born, F. Ann. Phys., 1922, 69, 473.

10.
Chen, H. H.; Lim, C. C.; Aziz, R. A. J. Chem. Thermodynamics, 1975, 7, 191. crossref(new window)

11.
Clark, A. M.; Din, F.; Robb, J.; Michels, A.; Wassenaar, T.; Zwietering, T. H. Physica, 1951, 17, 876. crossref(new window)

12.
Clusius, K. Z. Phys. Chem., 1935, B31, 459.

13.
Clusius, K. Z. Phys. Chem., 1941, B49, 1.

14.
Clusius, K.; Schleigh, K.; Vogelmann, M. Helv. Chim. Acta, 1963, 46, 1705. crossref(new window)

15.
Clusius, K; Weigand, K. Z. Phys. Chem., 1940, B46, 1.

16.
Crommelin, C. A. Communs. Phys. Lab. University Leiden, 1910, No. 115a, 3.

17.
Crommelin, C. A. Communs. Phys. Lab. University Leiden, 1913, No. 138c, 23.

18.
Flubacher, P.; Leadbetter, A. J.; Morrison, J. A. Proc. Phys. Soc(London)., 1961, 78, 1149. crossref(new window)

19.
Frank, A.; Clusius, K. Z. Phys. Chem., 1939, B42, 395.

20.
Freeman, M. P.; Halsey, G. D., Jr. J. Phys. Chem., 1956, 60, 1119. crossref(new window)

21.
Goldman, K.; Scrase, N. G. Physica, 1969, 45, 1. 2

22.
Grigor, A. F.; Steele, W. A. Phys. Chem. Liq., 1968, 1, 129. crossref(new window)

23.
Heastie, R. Proc. Phys. Soc(London)., 1959, 73, 490. crossref(new window)

24.
Kemp, R. C.; Kemp, W. R. G..; Cowan, J. A. Metrologia, 1976, 12, 93. crossref(new window)

25.
Lovejoy, D. R. Nature(London), 1963, 197, 353. crossref(new window)

26.
Michels, A.; Prins, C. Physica, 1962, 28, 101. crossref(new window)

27.
Olszewski, K. Phil. Trans. R. Soc.(London), 1895, A186, 253.

28.
Pool, R. A. H.; Schields, B. D. C.; Staveley, L. A. K Nature(London), 1958, 181, 831.

29.
Ramsay, W.; Travers, M.. W. Phil. Trans. R. Soc.(London), 1901, A197, 47. 9

30.
Rogovaya, I. A.; Kaganer, M. G. Russ. J. Phys. Chem., 1961, 35, 1049.

31.
Teague, R. K.; Pings, C. J. J. Chem. Phys., 1969, 48, 4973.

32.
Verbeke, O. B.; Jansoone, V.; Gielen, R.; De Boelpaep, J. J. Phys. Chem., 1969, 73, 4076. crossref(new window)

33.
Meihuizen, J. J.; Crommelin, C. A. Communs. Phys. Lab. University Leiden, 1937, No. 245c, 1.

34.
Clusius, K. Z. Phys. Chem., 1941, B50, 403.

35.
Filipe, E. J. M.; Deiters, U. K; Calado, J. C. G. J. Chem. Thermodynamics, 1998, 30, 1543. crossref(new window)

36.
Filipe, E. J. M.; Gomes de Azevedo, E. J. S.; Martins, L. F. G.; Soares, V. A. M.; Calado, J. C. G. J. Phys. Chem., 2000, B104, 1315.

37.
Filipe, E. J. M.;Martins, L. F. G.; Calado, J. C. G; McCabe, C, Jackson, G. J. Phys. Chem., 2000, B104, 1322.

38.
Habgood, H. W.; Schneider, W. G. Can. J. Chem., 1954, 32, 98. crossref(new window)

39.
Martins, L. F. G.; Filipe, E. J. M.; Calado, J. C. G. J. Phys. Chem., 2002, B106, 1741.

40.
Michels, A.; Wassenaar, T. Physica, 1950, 16, 253. crossref(new window)

41.
Plank, R.; Riedel, L. Ing. Arch., 1948, 16, 255. crossref(new window)

42.
Tex. J. Sci., 1949, 1, 86.

43.
Goodwin, R. D. J. Res. Natl. Bur. Stand., Sect. A, 1969, 73A, 487. crossref(new window)

44.
Keesom, W. H. Physik. Ber., 1923, 4, 613.

45.
TRC TRC Thermodynamic Tables Non-Hydrocarbons, vol. V; Thermodynamic Research Center, The Texas A&M Univ., System College Station, TX 77843-3111, U.S.A., 1958; p.k-60, k-70, k-80.

46.
Smith, J. M.; Van Ness, H. C.; Abbott, M. M. Introduction to Chemical Engineering Thermodynamics, 6th ed.; McGraw-Hill Book Co.: New York, U.S.A., 2001; p.655.

47.
De Boer, J.; Bird, R. B. Phys. Rev., 1951, 83, 1259. crossref(new window)