JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)
Zhao, Pu Su; Zhao, Zhan Ru; Jian, Fang Fang; Lu, Lu De;
  PDF(new window)
 Abstract
The crystal structure of (TBAM) (n-Bu4N=tetrabutylammonium) has been determined by X-ray crystallography. It crystallizes in the monoclinic system, space group C2/c, with lattice parameters =16.314(5), b=17.288(5), c=17.776(4) =101.47(3), and Z=4. In anion, Mo atoms occupy six vertices of octahedron and each Mo atom is coordinated by six oxygen atoms to adopt distorted octahedral coordination geometry. The average bond distance of Mo-Ot (terminal), Mo-Ob (bridged) and Mo-Oc (central) are 1.680 , 1.931 and 2.325 respectively. In cation, the N atom possesses a slightly distorted tetrahedral geometry. There are some potential extensive C-H O hydrogen bonds in the lattice, by which connecte molecules and stabilize the crystal structure. Thermogravimetric analysis suggests that thermal decomposition of the title compound includes two transitions and it loses weight at 356.0 and 803.5 , respectively, and the residue presumable be . Accordingly, the title compound has high thermal stability.
 Keywords
Isopolyoxomolybdate;Tetrabutylammonium;Crystal Structure;Thermalstability;
 Language
English
 Cited by
1.
Cation effects on imidization of the hexamolybdate dianion via direct dehydration using the green combination of dimethoxypropane in dimethylsulfoxide, Inorganic Chemistry Communications, 2017, 84, 84  crossref(new windwow)
 References
1.
Ohashi, Y.; Yanagi, K.;Sasads, Y.; Yamase, T. Bull. Chem. Soc. Jpn. 1982, 55, 1254. crossref(new window)

2.
Prosser-Mccartha, C. M.; Kadkhodayan, M.; Williamson, M. M.; Bouchard, D. A; Hill, C. L. J. Chem, Soc., Chem. Commun. 1986, 1747.

3.
Willamson, M. M.; Boouchard, D. A; Hill, C. L. Inorg. Chem. 1987, 26, 1436. crossref(new window)

4.
Hill, C. L; Bouchard, D. A.; Kadkhodayan, M.; Willamson, M. M.; Schrnidt, J. A.; Hilinski, E. F. J. Am. Chem. Soc. 1988, 110, 5471. crossref(new window)

5.
Attanasio, D.; Bonamico, M.; Fares, Y.; Imperatori, P.; Suber, L. J. Chem, Soc., Dalton Trans, 1990, 3221.

6.
Attanasio, D.; Bonarnico, M.; Fares, V.; Sube, L. J.Chem. Soc., Dalton Trans. 1992, 2523.

7.
Xu, X. X.; You, X. Z.; Wang, X. Polyhedron, 1994, 13, 1011. crossref(new window)

8.
Pope, M. T.; Muller, A. Angew. Chem. Int. Ed. Eng. 1991, 30, 34. crossref(new window)

9.
Launary, J. P. J. Inorg. Nucl. Chem 1976, 38, 807. crossref(new window)

10.
Xu, X. X.; You, X. Z.; Wang, X. Acta Chemica Scandinavica. 1995, 5.

11.
Sheldrick, G. M. Actc Cryst., Sect. A 1969, 46, 467.

12.
Sheldrick, G. M. SHELXTL97, Program for Crystal Structure refinement, University of Gottingen, Germany, 1993.

13.
Wilson, A. J. International Table for X-ray Crystallography, volume C, 1992; Kluwer Academic Publishers, Dordrecht: Tables 6.1.1.4 (pp. 500-502) and 4.2.6.8 (pp. 219-222) respectively.

14.
Fuchs, S.; Fretwald, W; Hartl, H. Acta Crystallogr., Sect. B. 1978, 34, 1764. crossref(new window)

15.
Leegg, W.; Sheldrick, G. M. Acta Crystallogr., Sect. B. 1982, 2906.

16.
Steiner Th. Cryst. Rev, 1996, 6, 1. crossref(new window)

17.
Jeffrey, G. A.; Maluszynska, H.; Mitra J.; Int. J. Biol. Macromol. 1985, 7, 336. crossref(new window)