JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Hydrothermal Synthesis and Transition Metal Cations Exchange Characterization of Titanium and [Titanium+Alkali Metals] Substituted-11Å Tobermorites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Hydrothermal Synthesis and Transition Metal Cations Exchange Characterization of Titanium and [Titanium+Alkali Metals] Substituted-11Å Tobermorites
El-Korashy, S.A.;
  PDF(new window)
 Abstract
Titanium and [titanium+Na(K)] substituted 11 tobermorites solids synthesized under hydrothermal conditions at 180 exhibit cation exchange properties toward heavy transition metal cations, such as Fe. The amount of heavy metal cations taken up by these solids was found in the order: Fe$^{2+}>Zn^{2+}>Cd^{2+}>Pb^{2+}$, and reached maximum at 10% [Ti+K]-substituted tobermorite. The total cation exchange capacity of the 10% Ti+Na (K) - substituted tobermorites synthesized here range from 71 to 89 meq/100 g, and 50-56 meq/100g for Ti-substituted only. Results indicated that 10% [Ti+K] substitution exhibit cation exchange capacity more 2.4 times than the unsubstituted-tobermorite. This is due to the increase of the number of active sites on the exchangers. The incorporation of Ti and/or [Ti+Na(K)] in the lattice structure of synthesized tobermorites is due to exchange of Ti, respectively. The mechanism of Ti and [Ti+Na(K)] incorporations in the crystal lattice of the solids during synthesis and the heavy metal cations uptaken by these solids is studied.
 Keywords
11Tobermorite;[Ti+Na] (K)-Substituted Tobermorite;Synthesis;Cation Exchange;Heavy Metals Uptake;
 Language
English
 Cited by
1.
분류층 석탄가스화 장치 석탄입자 분포의 전산해석 연구,송우영;김혜숙;신미수;장동순;이재구;

한국폐기물자원순환학회지, 2014. vol.31. 6, pp.671-680 crossref(new window)
2.
석탄 가스화를 통한 전력 생산과 DME 병산 공정에 대한 기초 경제성 분석,유영돈;김수현;조원준;모용기;송용택;

Korean Chemical Engineering Research, 2014. vol.52. 6, pp.796-806 crossref(new window)
1.
The effect of gyrolite structure properties on Zn2+ion adsorption, Desalination and Water Treatment, 2016, 57, 4, 1756  crossref(new windwow)
 References
1.
Suzuki, T.; Hatsuchika, T.; Miyake, M. J. Chem. Soc.Faraday, Trans, 1984, 180, 3157.

2.
Komarneni, S.; Roy, D.M., Scientific Basis for NuclearWaste Management, Brookins D. G. (ed.) Elsevier,New York, 1983, 5, 55.

3.
Shrivastava, O.P.; Komarneni, S. Cem. Concr. Res., 1994,24(3), 573. crossref(new window)

4.
Macias, A.; Kindness, A.; Glasser, F. P. Cem. Concr.Res., 1997, 27(2), 215. crossref(new window)

5.
Bagosi, S.; Csetenyi, L. J. Cem. Concr. Res., 1998, 28(12), 1753. crossref(new window)

6.
Sandor, B.; Laszlo, J. C. Cem. Concr. Res., 1999, 29,479. crossref(new window)

7.
El-Korashy, S. A. J. Mater. Sci, 2003, 38, 1709. crossref(new window)

8.
Lena, Q. M. A.; Gad, N. R., Water, Air and Soil Pollution, 1999, 110, 1. crossref(new window)

9.
Komarneni, S., Nucl. Chem. Waste Manage, 1985, 5(4), 247. crossref(new window)

10.
Komarneni, S.; Breval E.; Roy, D.M.; Roy, R. Cem.Concr. Res. 1988, 18, 204. crossref(new window)

11.
Labhestwar, N.; Shrivastava, O. P. Ind. J. Chem. Soc.1989, 27A(11), 999.

12.
Labhestwar, N.; Shrivastava, O.P., React Solids, 1989,7(3), 225. crossref(new window)

13.
Tsuji, M.; Komarneni, S. J. Mater. Res. 1989, 4(3).

14.
El-Korashy, S. A., Monatshefte für Chemie, 1997, 128,599. crossref(new window)

15.
El-Korashy, S. A.; Al-Wakeel, E. I. Egypt J. Chem.,1999, 42(3), 237.

16.
Al-Wakeel; E. I., El-Korashy, S. A.; El-Hemaly, S. A.;Rizk, M. A, J. Mater. Sci. 2001, 36, 2405. crossref(new window)

17.
El-Korashy, S. A. Monatshefte für Chemie, 2002, 133(3), 333. crossref(new window)

18.
Siau Ciunas, R.; Palubinskaite, D; Kondratiene, D, Mater.Sci. (Medziagotyra), 2001, 7(3), 177.

19.
El-Korashy, S. A., accepted for publication in J. of IonExange (Japan) (In press).

20.
Megaw, H. D.; Kelsey, C. H, Nature (London), 1956,177, 390. crossref(new window)

21.
Hamid, S. N., Kristallogr Z, 1981, 145, 189.

22.
Komarneni, S.; Tsuji, M. J. Amer. Ceram. Soc., 1989,72(9), 1668. crossref(new window)

23.
Komarneni, S.; Roy, R.; Roy, D. M.; Fyfe, C. A.;Kennedy, G. J.; Bothner, A. A.; Dadok, J.; Chesnick,A. S. J. Mater. Sci. 1985, 20, 4209. crossref(new window)

24.
Okada, Y; Ishida, H; Mitsuda, T. J. Amer. Ceram. Soc.1994, 76(3), 765.

25.
Pkada, Y; Isu, N.; Masuda, T.; Ishida, H. J. Ceram. Soc.Japan, 1994, 102(12), 1148. crossref(new window)

26.
Tsuji, M.; Komarneni, S.; Malla, P. J. Amere. Ceram.Soc., 1991, 74(2), 274. crossref(new window)

27.
El-Korashy, S. A.; Al-Wakeel, E. I., El-Hemaly, S. A.;Rizk, M. A. Egypt. J. Chem., 2002, 45(4), 723.

28.
Tsuji, M.; Komarneni, S. J. Amer. Ceram. Soc., 1989,72, 1668. crossref(new window)

29.
Komarneni, S; Roy, D. M.; Roy, R. Cem. Concr. Res.,1986, 16, 47. crossref(new window)

30.
El-Korashy, S. A. J. Korean Chem. Soc., 2002, 46(6),515. crossref(new window)

31.
Al-Wakeel, E. I.; El-Korashy, S. A. J. Mater. Sci., 1996,31, 1909. crossref(new window)

32.
Lee, J. D. “Concise Inorganic Chemistry, 1991, 4th edn.Chapman & Hall, London, P. 48.

33.
Wieslawa, N. W., Cem. Concr. Res. 1999, 29, 1759. crossref(new window)