Advanced SearchSearch Tips
EPR and Electrical Studies in Layered Na1.9Li0.1Ti3O7 and its Copper Doped Derivatives
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EPR and Electrical Studies in Layered Na1.9Li0.1Ti3O7 and its Copper Doped Derivatives
Pal, D.; Chand, Prem; Tandon, R.P.; Shripal;
  PDF(new window)
Sintered ceramic samples of pure and some copper doped layered sodium lithium tri-titanate () materials with different dopant molar percentages (0.0 at sites in the lattice is proposed in this paper. Furthermore, three distinct regions have been identified in log() versus 1000/T plots. The lowest temperature region is attributed to electronic hopping conduction(polaron) for all copper doped derivatives and ionic conduction for lithium substituted .The mechanism of conduction in the intermediate region is associated interlayer ionic conduction and in the highest temperature region is associated modified interlayer ionic conduction.
Alkali Titanate;Layered Ceramic;EPR;Electronic Hopping Conduction (Polaron);Ionic Conduction;
 Cited by
Influence of copper doping on structural and dielectric response on sodium lithium tri titanates (Na1.9Li0.1)Ti3O7:X Cu (0.0 ≤ X ≤ 0.1), Journal of Materials Science: Materials in Electronics, 2012, 23, 10, 1835  crossref(new windwow)
Preparation and Characterization of Some Manganese Doped Layered Na1.86Li0.10K0.04Ti3O7Ceramics, Integrated Ferroelectrics, 2010, 120, 1, 18  crossref(new windwow)
EPR and mixed electronic-ionic conductivity studies of pure and manganese doped layered Potassium–Lithium tetra titanates (K1.9Li0.1Ti4O9), Journal of Materials Science: Materials in Electronics, 2007, 18, 4, 401  crossref(new windwow)
Structural and EPR studies of Lithium inserted layered Potassium tetra titanate K2Ti4O9 as material for K ions battery, Journal of Materials Science: Materials in Electronics, 2015, 26, 9, 6647  crossref(new windwow)
S. Anderson and A. D. Wadsley, Acta Cryst. 1961, 14 1245 crossref(new window)

O. V. Yakubovich and V. V. Kireev, J. Crystallography Report 2003, 48(1), 24 crossref(new window)

H. Izawa, S. Kikkawa and M. Koizumi, J. Phys. Chem. 1982, 86, 5023 crossref(new window)

Masato Machida, Xu. Wei Ma, Hideki Taniguchi, Jun- Ichi Yabunaka and Tsuyoshi Kijima, J. Molecular Catalysis A: Chemical 2000, 155, 131 crossref(new window)

Shripal, Ph.D. Thesis, C. S. J. M. University, Kanpur, India 1991

Shripal, Prem Chand, S. D. Panday, Mater. Sci., J. Materials in Electronics 1991, 2, 89 crossref(new window)

Shripal, R. P. Tandon and S. D. Panday, J. Phys. Chem. Solids, 1991, 52(9), 1101 crossref(new window)

Shripal, R. P. Tandon, A. K. Mishra and S. D. Panday, Eur. J. Solid State Inorg. Chem. 1992, 29, 229

J. B. Boyce and J. C. Mikkelesan, Solid State Communications 1979, 31, 741 crossref(new window)

N. Masaki, S. Uchida and T. Sato, Material Chemistry, 2002, 12, 305 crossref(new window)

H. T. Langhammer, T. Muller, R. Botteher, V. Mueller, H. P. Abicht, J. Eur. Ceramic Society, 2004, 24, 1489 crossref(new window)

Seoung-Soo Lee, Song – Ho Byeon, J. Korean Chem. Soc., 2004, 25, 1051 crossref(new window)

M. Holzinger, A. Benisek, W. Schnelle, E. Gmelin, J. Maier, W. Sitte, J. Chemical Thermodynamics, 2003, 35(9), 1469 crossref(new window)

S. Zhang, Q. Chen and L. M. Peng, J. Phys.Rev. B. 2005, 71, 014104 crossref(new window)

Shripal, Sugandha Badhwar, Deepam Maurya, Jitendra Kumar, J. Mater. Sci.: Materials in Electronics (in press) (2005)

Shripal, Sugandha Badhwar, Deepam Maurya, Jitendra Kumar and R. P. Tandon, Proceeding of ACMP-05 (Allied Publisher, 11-12 Feb.2005) p. 250

Deepam Maurya, Jitendra Kumar, Shripal, J. Phys. Chem. Solids 2005 (in press)

Shripal, Shailja, Deepam Maurya and Jitendra Kumar J. Physica B (Sent for publication) 2005

A. Abragam and B. Bleaney, Electron Paramagnetic resonance of Transition ions, Clarendon Press, Oxford 1970 p. 455

E. Poonguzhali, R. Srinivasan, R. Venkatesan, R. V. S. S. N. Ravikumar, P. Sambasiva Rao, J. Phys. Chem. of Solids, 2003, 64, 1139 crossref(new window)