JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Reaction Dynamics of Continuous Time Random Walker in Heterogeneous Environment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Reaction Dynamics of Continuous Time Random Walker in Heterogeneous Environment
Seong, Jae-Yeong;
  PDF(new window)
 Abstract
We report an exact relation between the survival probability, the revisit time distribution, and the reaction-free propagator of the continuous time random walker. The relation holds even for such a general case where the random walker has a distinct jump dynamics at each lattice site, which may be dependent also on the direction of the jump. The application range of the obtained relation is not limited to the nearest neighbor hopping in the bulk lattice either. The result is applicable to a higher dimensional system with the spherical symmetry as well as it is to the one-dimensional system.
 Keywords
Continuous Time Random Walker;Reaction Dynamics
 Language
English
 Cited by
 References
1.
E.W. Montroll, G. H. Weiss, J. Math. Phys. 1965, 6, 167. crossref(new window)

2.
"Aspect and applications of the random walk", G. H. Weiss, (North-Holland, Amsterdam-London-New York-Tokyo, 1994). crossref(new window)

3.
J. Klafter and R. Silbey, Phys. Rev. Lett. 1980, 44, 55 crossref(new window)

4.
H. Scher and E. W. Montroll, Phys. Rev. 1975, B12, 2455

5.
G. H. Weiss, J. M. Porra, J. Masoliver, Phys. Rev. 1998, E58, 6431 crossref(new window)

6.
B. Berkowitz, H. Scher, Phys. Rev. Lett. 1997, 79, 4038 crossref(new window)

7.
J. Sung, R. J. Silbey, Phys. Rev. Lett. 2003, 91, 160601 crossref(new window)

8.
M. von Smoluchowski, Z. Phys. Chem. 1917, 92, 129 crossref(new window)

9.
E. W. Montroll, H. Scher, J. Stat. Phys. 1973, 9, 101 crossref(new window)

10.
S. A. Rice, Diffusion-Limited Reaction (Elsevier, Amsterdam, 1985) crossref(new window)

11.
K. Razi Naqvi, K. J. Mork, S. Waldenstrom, Phys. Rev. Lett. 1982, 49, 304 crossref(new window)

12.
K. Razi Naqvi, K. J. Mork, S. Waldenstrom, J. Chem. Phys. 1983, 78, 2710 crossref(new window)

13.
N. G. van Kampen, I. Oppenheim, J. Math. Phys. 1972, 13, 842 crossref(new window)

14.
N. G. van Kampen, I. Oppenheim, 'Stochastic processes in chemical physics', ed. by I. Oppenheim, K. E. Shuler, G. H. Weiss. (MIT press, Cambridge, 1977)