JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Theoretical Studies on the Structure and Aromaticity of 1H-Indene and Mono-sila-1H-Indene
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Theoretical Studies on the Structure and Aromaticity of 1H-Indene and Mono-sila-1H-Indene
Ghiasi, Reza; Monnajemi, Majid;
  PDF(new window)
 Abstract
The electronic structure and properties of the 1H-indene and mono-sila-1H-indene series have been investigated using basis set of 6-31G(d, p) and hybrid density functional theory. Basic measures of aromatic character derived from structure, molecular orbitals, a variety of magnetic criteria (magnetic isotropic and anisotropic susceptibilities) are considered. Energetic criteria suggest that In(Si7) enjoy conspicuous stabilization. However, by magnetic susceptibility isotropic this system are among the least aromatic of the family: Within their isomer series, In(Si4) is the most aromatic using this criteria. Natural bond orbital (NBO) analysis method was performed for the investigation of the relative stability and the nature of the 8-9 bonds in 1H-indene and mono-sila-1H-indene compounds. The results explained that how the p character of natural atomic hybrid orbital on X8 and X9 (central bond) is increased by the substitution of the C8 and C9 by Si. Actually, the results suggested that in these compounds, the X8-X9 bond lengths are closely controlled by the p character of these hybrid orbitals and also by the nature of C-Si bonds. The magnitude of the molecular stabilization energy associated to delocalization from X8-X9 and to * X8-X9 bond orbital were also quantitatively determined. Molecular orbital (MO) analysis further reveal that all structure has three delocalized MOs and two delocalized MOs and therefore exhibit the aromaticity.
 Keywords
1H-Indene;Sila-1H-Indene;Aromaticity;magnetic properties;Natural bond orbital (NBO)
 Language
Korean
 Cited by
1.
An unusual 3D metal–organic framework, {[Ag4(μ4-pzdc)2(μ-en)2]·H2O}n: C–H⋯Ag, N–H⋯Ag and (O–H)⋯Ag interactions and an unprecedented coordination mode for pyrazine-2,3-dicarboxylate, CrystEngComm, 2012, 14, 8, 2817  crossref(new windwow)
2.
Electronic structure modeling of dinuclear copper(II)-methacrylic acid complex by density functional theory, Journal of Molecular Modeling, 2010, 16, 9, 1509  crossref(new windwow)
 References
1.
Patai, S.; Rappoport, Z.; Eds, The Chemistry of Organic Silicon Compounds; Wiley: New York, 1989; p 1015

2.
Katritzky, A. R.; Rees, C. W.; Scrivem, E. F. (Editors-in-Chief) Comprehensive Heterocyclic Chemistry, A review of the Literature 1982–1995. The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds, Pergamon Press, UK, 1996

3.
Barton, D.; Ollis, W.D. Comprehensive Organic Chemistry: The Synthesis and Reactions of Organic Compounds, Pergamon Press, New York, 1979

4.
Andres L. S.; Borin, A. C. Chemical Physics. 2000, 26, 267 crossref(new window)

5.
Klots, T. D. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 2307 crossref(new window)

6.
Zilberg, S.; Kendler, S.; Haas, Y. J. Phys. Chem. 1996, 100, 10869 crossref(new window)

7.
A. A. El-Azhary, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 1999, 55, 2437 crossref(new window)

8.
Collins, J. B. Schleyer, P. v. R. Inorg. Chem. 1977, 16, 152 crossref(new window)

9.
Jemmis, E. D.; Alexandratos, S.; Schleyer, P. v. R. Streitwieser, A.; Schaefer, H. F. J. Am. Chem. Soc. 1978, 100, 5695 crossref(new window)

10.
Krogh-Jespersen, K.; Chandrasekhar, J.; Schleyer, P. v. R. J. Org. Chem. 1980, 45, 1608 crossref(new window)

11.
Garrat. P. J. Aromaticity; Willey: New York. 1986

12.
Minkin, V. J; Glukhovesev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity: Electronic and Structural Aspects; Wiley: New York, 1984

13.
Schleyer, P. v. R.; Jiao, H. Pure Appl. Chem. 1996, 68, 209 crossref(new window)

14.
Krygowski, T. M.; Cvranski, M. K; Czarnocki Z.; Hafelinger, G.; Katrizky., Tetrahedron, 2000, 56, 1783 crossref(new window)

15.
Li, W. Q; Tian, W. Q.; Feng, J. K; Liu, Z. Z.; Ren, A M.; Zhang, G. J. Phys. Chem. A, 2005, 109, 8391 crossref(new window)

16.
Li, X. W.; Pennington, W. T; Robinson, G. H.; J. Am. Chem. Soc. 1995, 117, 7578 crossref(new window)

17.
Li, X. W.; Xie, Y.; Schreiner, P. R.; Gripper, K. D.; Crittendon, R. C.; Campana, C. F.; Schaefer, H. F.; Robinson, G. H.; Organometallics. 1996, 15, 3798 crossref(new window)

18.
Robinson, G. H. Acc. Chem. Res. 1999, 32, 773 crossref(new window)

19.
Ghiasi, R. J. Mol. struc (THEOCHEM). 2005, 718, 225 crossref(new window)

20.
Ghiasi, R. J. Organome. Chemistry. 2005, 690, 4761 crossref(new window)

21.
Li, X.; Kuznetsov, A. E.; Zhang, H. F.; Boldyrev, A. I.; Wang, L. S. Science, 2001, 291, 859 crossref(new window)

22.
A. E.Kuznetsov, J. D. Corbett, L. S. Wang, A. I. Boldyrev, Angew. Chem., Int. Ed. 2001, 40, 3369 crossref(new window)

23.
Kuznetsov, A. E.; Boldyrev, A. I.; Li, X.; Wang, L. S. J. Am. Chem. Soc. 2001, 123, 8825 crossref(new window)

24.
Fowler, P. W.; Havenith, R. W. A.; Steiner, E. Chem. Phys. Lett. 2001, 342, 85 crossref(new window)

25.
Fowler, P. W.; Havenith, R. W. A.; Steiner, E. Chem. Phys. Lett. 2001, 359, 530

26.
Katrizky, A. R.; Barczynski, P.; Musumarra, G.; Pisano, D.; Szafran, M. J. Am. Chem. Soc. 1989, 111, 7 crossref(new window)

27.
Jug, K.;. Koster, A. M. J. Phys. Org. Chem. 1991, 4, 163 crossref(new window)

28.
Schleyer, P. v. R.; Freeman, P. K.; Jiao, H.; Goldfuss, B., Angew.Chem., Int. Ed. Engl. 1995, 34, 337 crossref(new window)

29.
Bird, C. W. Tetrahedron, 1996, 52, 9945 crossref(new window)

30.
Schleyer, P. v. R.; Maerker, C.; Dransfekd, A.; Jiao, H.; Homm, N. v. E. J. Am. Chem. Soc. 1996, 118, 6317 crossref(new window)

31.
Schleyer, P. v. R.; Jiao, H.; Pure Appl. Chem. 1996, 68, 209 crossref(new window)

32.
Goldfuss. B.; Schleyer. P. v. R.; Hampel. F. Organometallics, 1996, 15, 1998

33.
Gaussian 98, Revision A.7, Frisch, M. J.; Trucks, G. W; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, J. R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. E.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; and Pople, J. A.; Gaussian, Inc., Pittsburgh PA, (1998)

34.
Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (THEOCHEM). 1988, 169, 41 crossref(new window)

35.
Becke, A. D.; J. Chem. Phys. 1993, 98, 5648 crossref(new window)

36.
Lee, C.; Yang, W.; Parr, R. G.; Phys. Rev. B. 1988, 37, 785 crossref(new window)

37.
Cheeseman, J. R.; Frisch, M. J.; Trucks G. W.; Keith, T. A.; J. Chem. Phys. 1996, 104, 5497 crossref(new window)

38.
Keith, T. A.; Bader, R. F. Chem. Phys. Lett. 1993, 210, 223 crossref(new window)

39.
Li, Y. S.; Jalilian, M. R.; Durig, J. R. J. Mol. Struct. 1979, 51, 171 crossref(new window)

40.
Southern, J.F.; Scha¨fer, L.; Brendhaugen, K.; Seip, H. M. J. Chem. Phys. 1971, 55, 2418 crossref(new window)

41.
Pearson, R. G.; J. Org. Chem. 1989, 54, 1423 crossref(new window)

42.
Zhou, Z.; Parr, R. G.; Tetrahedron Lett. 1988, 29, 4843 crossref(new window)

43.
Z. Zhou, R. G. Parr, J. Am. Chem. Soc. 1989, 111, 7371 crossref(new window)

44.
Minsky, A.; Meyer, A. Y.; Rabinovitz, M.; Tetrahedron, 1985, 41, 785 crossref(new window)

45.
Pearson, R. G.; J.Am. Chem. Soc. 1988, 110, 2092 crossref(new window)

46.
Pearson, R. G.; Inorg. Chem. 1988, 27, 734 crossref(new window)

47.
Reed, A. E.; Curtiss, L. A.; Weinhold, F.; Chem. Rev. 1988, 88, 899 crossref(new window)