JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DFT Studies on the Proton Affinities of Oxazole
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DFT Studies on the Proton Affinities of Oxazole
Lee, Hyun-Mee; Lee, Gab-Yong;
  PDF(new window)
 Abstract
The oxazole plays an important role in the binding of lexitropsin to the guanine-cytosine base pair from minor groove of DNA. The geometry optimization is performed with DFT calculations for the two possible conformations of the protonated oxazole. The proton affinities are calculated at B3LYP level of theory with 6-31G* basis set for the optimized geometry. It is found that the proton affinites of the conformations in which the oxazole nitrogen is the protonation center are greater than that of the conformations in which the oxazole oxygen is the protonation center. This result is in good agreement with molecular electrostatic potential (MEP) contour map. The proton affinities are also studied for various substituted oxazoles with the electron-donating and -withdrawing groups to estimate substitutent effect on the proton affinity at the hydrogen bonding site of the oxazoles. it is shown that the electron-donating substituents increase the proton affinity of oxazole, while the electron-withdrawing substituents decrease it.
 Keywords
Oxazole;Proton affinity;Substituent effect;DFT;
 Language
Korean
 Cited by
 References
1.
Hurley, L. H. J. Med. Chem., 1989, 32, 2027 crossref(new window)

2.
Pindur, U.; Fischer, G. Curr. Med. Chem., 1996, 3, 379

3.
Neidle, S. Biopolymers, 1997, 44, 105 crossref(new window)

4.
Chaires, J. B. Curr. Opin. Struct. Biol., 1998, 8, 314 crossref(new window)

5.
Neidle, S. Nucleic Acid Structure and Recognition. Oxford University Press, Inc., NY. 2002

6.
Hahn, F. E. in Antibiotic. Mechanism of Action of Anticrobial and Antitumor Agents Corcoran, J. W.; Hahn, F. E., Eds.; Springer-Verlag: New York, U.S.A., 1975, p 79

7.
Arcamonen, F.; Orezzzi, P. G.; Barbieri, W.; Nicollela, V.; Penco, S. Gazz. Chim. Ital. 1967, 97, 1097

8.
van Dyke, M. W.; Hertzberg, R. P.; Dervan, P. B. Proc. Natl Acad. Sci. USA, 1982, 79, 5470 crossref(new window)

9.
Kopka, M. L.; Yoon, C.; Goodsell, D.; Pjura, P.; Dickerson, R. E. J. Mol. Biol., 1985, 183, 553 crossref(new window)

10.
Pelton, J. G.; Wemmer, D. E. Biochemistry, 1988, 27, 8088 crossref(new window)

11.
Chaires, J. B. Biopolymers, 1997, 44, 201 crossref(new window)

12.
Kahn, S. D.; Pau, C. F.; Chamberlin, A. R.; Hehre, W. J. J. Am. Chem. Soc. 1987, 109, 650 crossref(new window)

13.
Hout, Jr., R. F.; Pietro, W. J.; Hehre, W. J. A Pictorial Approach to Molecular Structure and Reactivity New York, U.S.A., 1984

14.
Singh, U. C.; Kollman, P. A. J. Comput. Chem. 1984, 5. 129 crossref(new window)

15.
Connolly, M. L.; Olson, G. A. J. Comput. Chem. 1985, 6, 1 crossref(new window)

16.
O'Donnell, T. J.; Chabalowski, C. F. In Computer Graphics Applied to Molecular Modelling. in New Methods in Drug Research Makriyannis, A. Prous, R., Ed.: Barcelona, Spain, 1986, Vol. 2

17.
Dolenc, J.; Ostenbrink1, C.; Koller, J.; van Gunsteren, W. F. Nucleic Acids Res. 2005, 33, 725 crossref(new window)

18.
Lown, J. W.; Krowicki, K.; Bhat, U. G.; Skorobogaty, A,; Ward, B.; Dabrowiak, J. C. Biochemistry, 1986, 25, 7408 crossref(new window)

19.
Lown, J. W.; Krowicki, K.; Balzarini, J.; Newman, R. A.; de Clercq E. J. Med. Chem. 1989, 32, 2368 crossref(new window)

20.
Lown, J. W. Org. Prep. Proced. INT. 1989, 21 1 crossref(new window)

21.
Lown, J. W. Anticancer Drug Des. 1988, 3, 25

22.
Lee, M.; Chang, D. K.; Hartley, J. A.; Pon, R. T.; Krowicki, K.; Lown, J. W. Biochemistry, 1988, 27, 445 crossref(new window)

23.
Lee, M.; Coulter, D. M.; Pon, R. T.; Krowicki, K.; Lown, J. W. Biochemistry, 1988, 5, 1059

24.
Coll, M.; Aymami, J.; van der Marel, G. A.; van Boom, J. H.; Rich, A.; Wang, A. H. Biochemistry, 1989, 28, 310 crossref(new window)

25.
Goodsell, D. S.; Ng, H. L.; Kopka, M. L.; Lown, J. W.; Dickerson, R. E. Biochemistry, 1995, 34, 16654 crossref(new window)

26.
Del Bene, J. E. J. Am. Chem. Soc. 1977, 99, 3617 crossref(new window)

27.
Kabir, S.; Anne-Marie, S. J. Comput. Chem. 1991, 12, 1142

28.
Rao, K. E.; Bathini, Y.; Lown, J. W. J. Org. Chem. 1990, 55, 728 crossref(new window)

29.
Kumar, S.; Jaseja, M.; Zimmermann, J.; Yadagiri, B.; Pon, T. R.; Sapse, A-M.; Lown, J. W. J. Biomol. Struct. Dyn. 1990, 8, 99

30.
Lee, H. M.; Lee, G. Y. J. Kor. Chem. Soc. 1994, 38, 21

31.
Lee, H. M.; Lee, S. E.; Chang, M. S.; Park, B. K.; Lee, G. Y. J. Kor. Chem. Soc. 1995, 39, 493

32.
Lee, G. Y.; Lee, H. M. J. Kor. Chem. Soc., 1998, 42, 1

33.
Lee, G. Y.; Lee, H. M. J. Kor. Chem. Soc., 1998, 42, 391

34.
Gaussian 98, Revision A. 7, Frich, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakzewski, V. G.; Montgomery, Jr. J. A.; Stratman, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Morokuma, Q. Cui, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Stefanov, J. V.; Ortiz, B. B.; Liashenko, G. Liu, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen. M. W.; Wong, J. L.; Andres, W.; Head-Gordon., M.; Replogle, E. S.; Pople, J. A.; Gaussian, Inc., Pittsburgh, PA, 1998墲֗⨀ᄀĀ돀ᣨ?⨀塨?⨀ꁩ잖⨀섚돐잖⨀잖⨀졩잖⨀餚덐�잖⨀頚砚礙돀棠?⨀塨?⨀㣆?⨀儙돐잖⨀잖⨀磆?⨀⤙댐䁽ጄȀ

35.
Politzer, P. Toxicology Letters, 1988, 43, 257 crossref(new window)

36.
Thomson, C.; Higgins, D. Int. J. Quantum Chem.: Quantum Chem. Symp. 1988, 22, 97

37.
Mo, O.; de Paz, J. L. G.; Yanez, M. J. Phys. Chem. 1986, 90, 5597 crossref(new window)

38.
Catalan, J.; Mo, O.; de Paz, J. L. G.; Yanez, M. J. Org. Chem. 1984, 49, 4379 crossref(new window)