JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Interaction of Proline with Cu+ and Cu2+ Ions in the Gas PhaseGab Yong Lee*Department of Life Chemistry, Catholic University of Daegu, Gyeongsan 712‐702, Korea(Received March 3, 2009)INTRODUCTIONCopper ions are the most important transitionmetals involved in several biological processes ofliving systems, including oxidation, dioxygentransport, and charge transfer.1 The study of interactionsbetween the metal ion and amino acids hasattracted considerable attention from experimental2-6and theoretical6-11 viewpoints. Thermochemicalinformation on interactions between the metal ion and biological
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Interaction of Proline with Cu+ and Cu2+ Ions in the Gas PhaseGab Yong Lee*Department of Life Chemistry, Catholic University of Daegu, Gyeongsan 712‐702, Korea(Received March 3, 2009)INTRODUCTIONCopper ions are the most important transitionmetals involved in several biological processes ofliving systems, including oxidation, dioxygentransport, and charge transfer.1 The study of interactionsbetween the metal ion and amino acids hasattracted considerable attention from experimental2-6and theoretical6-11 viewpoints. Thermochemicalinformation on interactions between the metal ion and biological
Lee, Gab-Yong;
  PDF(new window)
 Abstract
The structures and metal affinities of the binding configurations of and to proline have been investigated using the hybrid three-parameter Density Functional Theory(DFT/B3LYP). We found that the metal-proline bonding and the energy ordering of several conformers were very different in -proline and -proline. For -proline, the ground state structure was found to have a bidentated coordination in which was coordinated to the carbonyl oxygen and imino group nitrogen of neutral proline. On the contrary, the ground state structure of -proline involves chelation between the two oxygens of the carboxylate group in a zwitterionic proline. The metal ion affinity of proline of the most stable -proline complex was calculated as 76.0 kcal/mol at 6-311++G(d,p) level, whereas the ion affinity of proline was calculated as 258.5 kcal/mol.
 Keywords
Copper;Proline;Metal ion affinity;Gas phase;DFT calculation;
 Language
Korean
 Cited by
1.
On the stability of [Pb(Proline)]2+ complexes. Reconciling theory with experiment, Chemical Physics Letters, 2014, 598, 91  crossref(new windwow)
2.
Interaction ofl-proline with group IIB (Zn2+, Cd2+, Hg2+) metal cations in the gas and aqueous phases: a quantum computational study, Canadian Journal of Chemistry, 2016, 94, 5, 501  crossref(new windwow)
3.
The [Cu]-catalyzed SNAR reactions: direct amination of electron deficient aryl halides with sodium azide and the synthesis of arylthioethers under Cu(II)–ascorbate redox system, Tetrahedron, 2010, 66, 38, 7642  crossref(new windwow)
4.
An insight into the interaction of L-proline with the transition metal cations Fe2+, Co2+, Ni2+: a gas phase theoretical study, Journal of Molecular Modeling, 2016, 22, 1  crossref(new windwow)
 References
1.
Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; Univesity Science Books: Mill Valley. CA. 1994

2.
Grese, R. P.; Cerny, R. L.; Gross, M. L. J. Am. Chem. Soc. 1989, 111, 2865

3.
Hu, P.; Gross, M. L. J. Am. Chem. Soc. 1992, 114, 9153 crossref(new window)

4.
Hu, P.; Gross, M. L. J. Am. Chem. Soc. 1993, 115, 8821 crossref(new window)

5.
More, M. B.; Ray, D.; Amentrout, P. B. J. Phys. Chem. A 1997, 101, 4254 crossref(new window)

6.
Lee, S.; Kim. H. S.; Beauchamp, J. J. Am. Chem. Soc. 1998, 120, 3188 crossref(new window)

7.
Cerda, B. A.; Wesdemiotis, C. J. Am. Chem. Soc. 1996, 118, 11884 crossref(new window)

8.
Cerda, B. A.; Hoyau, S.; Ohanessian, G.; Wesdemiotis, C. J. Am. Chem. Soc. 1998, 120, 2437 crossref(new window)

9.
Hoyau, S.; Ohanessian, G. Chem. Eur. J. 1998, 4, 1561 crossref(new window)

10.
Luna, A.; Morizur, J.-P.; Tortajada, J.; Alcami, M.; Mo, O., Yanez, M. J. Phys. Chem. A 1998, 102, 4652 crossref(new window)

11.
Sponer, J.; Burda, J. V.; Sobat, M.; Leszczynski, J.; Hobza, P. J. Phys. Chem. A 1998, 102, 5951 crossref(new window)

12.
Liedl, K. R.; Rode, B. M. Chem. Phys. Lett. 1992, 197, 181 crossref(new window)

13.
Blomberg, M. R. A.; Siegbahn, P. E. M.; Styring, S.; Babcock, G. T.; Akemark, B.; Korall, P. J. Am. Chem. Soc. 1997, 119, 8285 crossref(new window)

14.
Marino, T.; Russo, N.; Tocci, E.; Toscano, M. Int. J. Quan. Chem. 2001, 84, 264 crossref(new window)

15.
Cerda, B. A.; Wesdemiotis, C. J. Am. Chem. Soc. 1995, 117, 9734 crossref(new window)

16.
Hoyau, S.; Ohanessian, G. J. Am. Chem. Soc. 1997, 119, 2016 crossref(new window)

17.
Remko, M.; Fitz. D.; Rode, B. M. J. Phys. Chem. A 2008, 112, 7652 crossref(new window)

18.
Hoyau, S.; Ohanessian, G. C. R. Acad. Sci. Paris Serie II c 1998, 1, 795

19.
Marino, T.; Russo, N.; Toscano, M. J. Mass. Spectrom. 2002, 37, 786 crossref(new window)

20.
Bertrán, J.; Rodriguez-Santiago, L.; Sodupe, M. J. Phys. Chem. B 1999, 103, 2310 crossref(new window)

21.
Becke, A. D. J. Chem. Phys. 1993, 98, 1372 crossref(new window)

22.
Becke, A. D. J. Chem. Phys. 1993, 98, 5648 crossref(new window)

23.
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978

24.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J, M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Peterson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dennenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A. Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03, Revision B.05; Gaussian, Inc.; Pittsburgh PA. 2003

25.
Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. A 1996, 104, 9546 crossref(new window)

26.
Holthausen, M. C.; Mohr, M.; Koch, W. Phys. Lett. 1995, 240, 245

27.
Rodriguez-Santiago, L.; Sodupe, M.; Branchadell, V. J. Chem. Phys. 1996, 105, 9966 crossref(new window)

28.
Lesarri, A.; Mata, S.; Cocinero, E. J.; Blanco. S.; Lopez, J. C.; Alonso, J. L. Angew. Chem. Int. Ed. 2002, 41, 4673 crossref(new window)

29.
DeTar, D. F.; Luthra, N. P. J. Am. Chem. Soc. 1977, 99, 1232 crossref(new window)

30.
DeTar, D. F.; Luthra, N. P. J. Org. Chem. 1979, 44, 3299 crossref(new window)

31.
Milner-White, E. J.; Bell, L. H.; Maccallum, P. H. J. Mol. Biol. 1992, 228, 725 crossref(new window)

32.
Ramek, M; Kelterer, A.-M.; Nikolic, S. Int. J. Quan. Chem. 1997, 65, 1033 crossref(new window)

33.
Stepanian, S. G.; Reva, I. D.; Radchenko, E. D.; Adamowicz, L. J. Phys. Chem. A. 2001, 105, 10664 crossref(new window)

34.
Czinki, E.; Csaszar, A. G. Chem. Eur. J. 2003, 9, 1008 crossref(new window)

35.
Hu, P.; Loo, J. A. J. Am. Chem. Soc. 1995, 117, 11314 crossref(new window)

36.
Gatlin, C. L.; Turecek, F.; Vaisar, T. J. Am. Chem. Soc. 1995, 117, 3637 crossref(new window)

37.
Marino, T.; Russo, N.; Toscano, M. J. Phys. Chem. B. 2003, 107, 2588 crossref(new window)

38.
Fleming, G. J.; McGill, P. R.; Idriss, H. J. Phys. Org. Chem. 2007, 20, 1032 crossref(new window)