JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Statistical Study For The prediction of pKa Values of Substituted Benzaldoxime Based on Quantum Chemicals Methods
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Statistical Study For The prediction of pKa Values of Substituted Benzaldoxime Based on Quantum Chemicals Methods
Al-Hyali, Emad A.S.; Al-Azzawi, Nezar A.; Al-Abady, Faiz M.H.;
  PDF(new window)
 Abstract
Multiple regression analysis was used for the calculation of pKa values of 15 substituted benzaldoximes by using various types of descriptors as parameters. These descriptors are based on quantum mechanical treatments. They were derived by employing semi-empirical calculation represented by the PM3 model and an Abinitio method expressed by Hartree-Fock(HF) model performed at the 6-311 G(d, p) level of theory. The parameters tested for their ability to represent the variations observed in the experimental pKa(s) are atomic and structural properties including Muliken charges on the atoms of hydroxyl group and C
 Keywords
pKa value;Benzaldoxime;PM3;Ab initio;
 Language
English
 Cited by
 References
1.
Hdzbecher, Z.; Divis, L.; Kral, M.; Sucha, L.; Vlacil, F. Hand book of organic reagents in inorganic analysis, John Wiley & Sons: 1976; p 691.

2.
Jhaveri, L. C.; Nalk, H. B. J. Indian Chem. Soc. 1978, 2(2), 183.

3.
Vavaprasad, D. M. J. Poly. Sci. Part A. Polymer Chemistry 1986, 24, 3279. crossref(new window)

4.
Ebead, Y. H.; Salman, H. M.; Abdellah, M. A. Bull. Korean Chem. Soc. 2010, 31(4), 850. crossref(new window)

5.
Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd. ed.; Harper Collins; New York, 1987.

6.
Pine, S. H.; Hendrickson, J. B.; Carm, D. J.; Hammond, G. S. Organic chemistry, 4th ed.; McGraw-Hill: London, 1981; p 196.

7.
Strietwieser, A.; Heathcock, Jr. C. H. Introduction to Organic Chemistry, 2nd ed.; Macmillan Publishing Co.: New York, 1981; p 60.

8.
Kross, K. C.; Seybold, P. G.; Peralta-Inga, Z.; Politzer, P. J. Org. Chem. 2001, 66, 6919. crossref(new window)

9.
Kross, K. C.; Seybold, P. G. Int. J. Quantum Chem. 2000, 80, 1107. crossref(new window)

10.
Gross, K. C.; Seybold, P. G.; Hadad, C. M. Int. J. Quantum Chem. 2002, 90, 445. crossref(new window)

11.
Gross, K. C.; Seybold, P. G. Int. J. Quantum Chem. 2001, 85, 569. crossref(new window)

12.
Al-Azzawi, Nezar, A. The role of hydrogen bonding and other parameters on ionization constants of benzaldoximes, Ph. D. Thesis, Mosul, Iraq. 1998.

13.
Schlegel, H. B. ed.; Molar electronic structure, theory, geometry optimization on potential energy surface; World Scientific: Singapore, 1994.

14.
Baker, J. J. Comput. Chem. 1986, 17, 385.

15.
Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512. crossref(new window)

16.
Iczkowski, R. P.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547. crossref(new window)

17.
Parr, R. G.; Szentpaly, L. V.; Lin, S. J. Am. Chem. Soc. 1999, 121, 1922. crossref(new window)

18.
Shorter, J. Correlation analysis of organic chemistry; Research studies Press: New York, 1982.

19.
Rochester, C. H. Acidity function; Academic Press: London, 1970.

20.
Liler, M. Reaction mechanisms in aulfuric acid and other strong acid media; Academic Press: London, 1970.

21.
Albert, A. Selective toxicity; Methuen, London, 1968.

22.
Bieger, D.; Wassermann, O. J. Pharm. Pharmacol. 1967, 19, 844. crossref(new window)

23.
Albert, A. Selective toxicity, 6th ed.; Chapman and Hall London, Methuen, New York, 1979.

24.
Park, J. M.; No, K. T.; Jhon, M. S.; Scheraga, H. A. J. Compud. Chem. 1993, 14, 1482.

25.
Ibrahim, A. A.; Abdalrazaq, E. A. Am. J. Appli. Sci. 2009, K6(7), 1385.

26.
Hollingsworth, C. A. Seybold, P. G.; Hadad, C. M. In. J. of Quantum Chem. 2002, 90, 1396. crossref(new window)

27.
Singh, P. P.; Srivastava, H. K.; Pasha, F. A. Bio. Org. Med. Chem. 2004, 12(1), 171. crossref(new window)

28.
Pasha, F. A.; Srivastava, H. K.; Singh, P. P. Int. J. Quantum Chem. 2005, 104(1), 87. crossref(new window)