JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Specific Binding of Nile Red to Apomyoglobin
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Specific Binding of Nile Red to Apomyoglobin
Chowdhury, Salina A.; Lim, Man-Ho;
  PDF(new window)
 Abstract
Fluorescence correlation spectroscopy (FCS) is an emerging fluorescence technique used to study the dynamics of proteins on a millisecond to microsecond time scale at the single-molecule level. Solution pH-modulated protein conformational changes can be manifested by binding rate, fluorescence lifetime, and binding specificity of a probe molecule. The fluorescence lifetime of Nile red (NR) bound to apomyoglobin (apoMb) was measured to be ns, much longer than that in water solution ( ns). As the unfolding population of apoMb increased by lowering pH of solution, the fraction for the longer lifetime of NR decreased with an increasing fraction for the shorter lifetime of NR in water. Unlike 1-anilino-8-naphthalene sulfonic acid, which has many lifetimes due to nonspecific binding to the unfolded apoMb, NR bound to apoMb possesses only a single lifetime. These results suggest that NR binds specifically to native apoMb and thus can be utilized to probe the folding/unfolding dynamics of apoMb using FCS.
 Keywords
Fluorescence correlation spectroscopy;Fluorescence lifetime;pH denaturation;Folding/unfolding dynamics;
 Language
English
 Cited by
 References
1.
Bismuto, E.; Gratton, E.; Lamb, D. C. Biophys. J. 2001, 81, 3510. crossref(new window)

2.
Korlach, J.; Schwille, P.; Webb, W. W.; Feigenson, G. W. Proc. Natl. Acad. Sci. USA 1999, 96, 8461. crossref(new window)

3.
Yoshida, N.; Kinjo, M.; Tamura, M. Biochem. Biophys. Res. Comm. 2001, 280, 312. crossref(new window)

4.
Lead, J. R.; Wilkinson, K. J.; Starchev, K.; Canonica, S.; Buffle, J. Environ. Sci. Technol. 2000, 34, 1365. crossref(new window)

5.
Mahurin, S. M.; Dai, S.; Barnes, M. D. J. Phys. Chem. B 2003, 107, 13336. crossref(new window)

6.
Benda, A.; Benes, M.; Marecek, V.; Lhotsky, A.; Hermens, W. T.; Hof, M. Langmuir 2003, 19, 4120. crossref(new window)

7.
Guo, L.; Chowdhury, P.; Fang, J.; Gai, F. J. Phys. Chem. B 2007, 111, 14244. crossref(new window)

8.
Dertinger, T.; Pacheco, V.; Hocht, I. V. D.; Hartmann, R.; Gregor, I.; Enderlein, J. Chem. Phys. Chem. 2007, 8, 433. crossref(new window)

9.
Widengren, J.; Schwille, P. J. Phys. Chem. A 2000, 104, 6416. crossref(new window)

10.
Mei, E.; Tang, J.; Vanderkooi, J. M.; Hochstrasser, R. M. J. Am. Chem. Soc. 2003, 125, 2730. crossref(new window)

11.
Xiao, Y.; Buschmann, V.; Weston, K. D. Anal. Chem. 2005, 77, 36. crossref(new window)

12.
Xie, X. S.; Choi, P. J.; Li, G.-W.; Lee, N. K.; Lia, G. Annu. Rev. Biophys. 2008, 37, 417. crossref(new window)

13.
Min, W.; English, B. P.; Luo, G.; Cherayil, B. J.; Kou, S. C.; Xie, X. S. Acc. Chem. Res. 2005, 38, 923. crossref(new window)

14.
Eggeling, C.; Volkmer, A.; Seidel, C. A. M. Chem. Phys. Chem. 2005, 6, 791. crossref(new window)

15.
Rigler, R.; Widengren, J. Bioscience 1990, 3, 180.

16.
Enderlein, J.; Gregor, I.; Patra, D.; Dertinger, T.; Kaupp, U. B. Chem. Phys. Chem. 2005, 6, 2324. crossref(new window)

17.
Clarke, D. T.; Doig, A. J.; Stapley, B. J.; Jones, G. R. Proc. Natl. Acad. Sci. USA 1999, 96, 7232. crossref(new window)

18.
Farazi, T. A.; Manchester, J. K.; Gordon, J. I. Biochemistry 2000, 39, 15807. crossref(new window)

19.
Holtzer, M. E.; Bretthorst, G. L.; d'Avignon, D. A.; Angeletti, R. H.; Mints, L.; Holtzer, A. Biophys. J. 2001, 80, 939. crossref(new window)

20.
Magde, D.; Elson, E. L.; Webb, W. W. Biopolymers 1974, 13, 29. crossref(new window)

21.
Lamb, D. C.; Schenk, A.; Rocker, C.; Scalfi-Happ, C.; Nienhaus, G. U. Biophys. J. 2000, 79, 1129. crossref(new window)

22.
Magde, D.; Elson, E.; Webb, W. W. Phys. Rev. Lett. 1972, 29, 705. crossref(new window)

23.
Widengren, J.; Mets, U.; Rigler, R. J. Phys. Chem. 1995, 99, 13368. crossref(new window)

24.
Widengren, J.; Rigler, R.; Mets, U. J. Fluores. 1994, 4, 255. crossref(new window)

25.
Bonnet, G.; Krichevsky, O.; Libchaber, A. Proc. Natl. Acad. Sci. USA 1998, 95, 8602. crossref(new window)

26.
Haupts, U.; Maiti, S.; Schwille, P.; Webb, W. W. Proc. Natl. Acad. Sci. USA 1998, 95, 13573. crossref(new window)

27.
Demarest, S. J.; Horng, J. C.; Raleigh, D. P. Proteins 2001, 42, 237. crossref(new window)

28.
Li, Y.; Jing, G. J. Biochem. (Tokyo) 2000, 128, 739. crossref(new window)

29.
Muzammil, S.; Kumar, Y.; Tayyab, S. Eur. J. Biochem. 1999, 266, 26. crossref(new window)

30.
Ali, V.; Prakash, K.; Kulkarni, S.; Ahmed, A.; Madhusudan, K. P.; Bhakuni, V. Biochemistry 1999, 38, 13635. crossref(new window)

31.
Bedell, J. L.; McCrary, B. S.; Edmondson, S. P.; Shriver, J. W. Prot. Sci. 2000, 9, 1878. crossref(new window)

32.
Bhattacharyya, A.; Mandal, A. K.; Banerjee, R.; Roy, S. Biophys. Chem. 2000, 87, 201. crossref(new window)

33.
Dutta, A. K.; Kamada, K.; Ohta, K. J. Photochem. Photobiol. A 1996, 93, 57. crossref(new window)

34.
Ghoneim, N. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2000, 56, 1003. crossref(new window)

35.
Sackett, D. L.; Wolff, J. Anal. Biochem. 1987, 167, 228. crossref(new window)

36.
Chowdhury, S. A.; Lim, M. Bull. Korean. Chem. Soc. 2011, 32, 583. crossref(new window)

37.
Cocco, M. J.; Lecomte, J. T. J. Protein Science 1994, 3, 267.

38.
Polverini, E.; Cugini, G.; Annoni, F.; Abbruzzetti, S.; Viappiani, C.; Gensch, T. Biochemistry 2006, 45, 5111. crossref(new window)

39.
Cser, A.; Nagy, K.; Biczok, L. Chem. Phys. Lett. 2002, 360, 473. crossref(new window)