JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Analysis of the Microstructure and Oxidation Behavior of Some Commercial Carbon Fibers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of the Microstructure and Oxidation Behavior of Some Commercial Carbon Fibers
Kim, Dae-Ho; Kim, Bo-Hye; Yang, Kap-Seung; Bang, Yun-Hyuk; Kim, Sung-Ryong; Im, Hun-Kook;
  PDF(new window)
 Abstract
The relationship between the microstructure, mechanical properties, and oxidation behavior of pitch-, polyacrylonitrile (PAN)-, and Rayon-based carbon fibers (CFs) has been studied in detail. Three types of carbon fiber were exposed to isothermal oxidation in air and the weight change was measured by thermogravimetric analyzer (TGA) apparatus. After activation energy was gained according to the conversion at reacting temperature, the value of specific surface area and the surface morphology was compared, and the reaction mechanism of oxidation affecting development of pores of carbon fibers was examined. This study will lead to a new insight into the relationship between the microstructure and mechanical properties of carbon fibers.
 Keywords
Carbon fiber;Microstructure;Mechanical properties;Oxidation behavior;
 Language
English
 Cited by
1.
A new softening agent for melt spinning of softwood kraft lignin, Journal of Applied Polymer Science, 2013, 129, 3, 1274  crossref(new windwow)
2.
Growth of N-doped BiOBr nanosheets on carbon fibers for photocatalytic degradation of organic pollutants under visible light irradiation, Powder Technology, 2014, 260, 84  crossref(new windwow)
3.
Preliminary dynamic-mechanical analysis of polypropylene/short carbon fibers composites modified by a succinic anhydride-grafted atactic polypropylene, Polymer Engineering & Science, 2017, 57, 7, 731  crossref(new windwow)
 References
1.
Luthra, K. L. Carbon 1988, 26, 217. crossref(new window)

2.
Baklanova, N. I.; Kulyu, V. N.; Lyakhov, N. Z. Inorg. Mater. 1997, 33, 682.

3.
Kim, B.-H.; Kim, S. Y.; Kim, C.H.; Yang, K.S.; Lee, T.-J. Appl. Surf. Sci. 2010, 257, 662. crossref(new window)

4.
Prewo, K. M.; Batt, J. A. J. Mater. Sci. 1988, 23, 523. crossref(new window)

5.
Bleay, S. M.; Scott, V. D. Carbon 1991, 29, 871. crossref(new window)

6.
Cho, D.; Ha, H. S.; Lim, Y. S.; Yoon, B. I.; Kim, K. S. Carbon 1996, 34, 861. crossref(new window)

7.
Dhami, T. L.; Manocha, L. M.; Bahl, O. P. Carbon 1991, 29, 51. crossref(new window)

8.
Manocha, L. M.; Bahl, O. P. Carbon 1988, 26, 13. crossref(new window)

9.
Manocha, L. M.; Bahl, O. P.; Singh, Y. K. Carbon 1989, 27, 381. crossref(new window)

10.
Mahajan, O. P.; Yarzab, R.; Walker, P. L. Fuel 1978, 57, 643. crossref(new window)

11.
Sanchez, A. R.; Elguezabal, A. A.; Torre Saenz, L. L. Carbon 2001, 39, 1367. crossref(new window)

12.
Kasaoka, S.; Sakata, Y.; Kayano, S.; Masuoka, Y. Int. Chem. Eng. 1983, 23, 477.

13.
Hu, Y. Q.; Nikzat, H.; Nawata, M.; Kobayashi, N.; Hasatani, M. Fuel 2001, 80, 2111. crossref(new window)

14.
Matsumoto, T.; Mochida, I. Carbon 1993, 31, 143. crossref(new window)

15.
Blanco, C.; Lu, S. Carbon 2003, 41, 165. crossref(new window)

16.
Warner, S. B.; Peebles, L. H.; Uhlmann, D. R. J. Mater. Sci. 1979, 14, 556.

17.
Lv, M.-Y.; Ge, H.-Y.; Chen, J. J. Polym. Res. 2008, 16, 513.

18.
Blanco, S.; Lu, C.; Rand, B. Carbon 2002, 40, 132. crossref(new window)

19.
Roh, J.-S.; Kim, S.-H. Carbon Lett. 2009, 10, 38. crossref(new window)

20.
Donnet, J. B.; Bansal, R. C. Carbon Fibers, 2nd ed.; Marcel Decker: New York, 1990.

21.
Dami, T. L.; Manocha, L. M.; Bahl, O. P. Carbon 1999, 29, 51.

22.
Ismail, M. K. Carbon 1991, 29, 777. crossref(new window)

23.
Liu, C.-L.; Dong, W.-S.; Song, J.-R.; Liu, L. Mater. Sci. Eng. A 2007, 459, 347. crossref(new window)

24.
Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesley Publishing Company: Menlo Park, 1978.

25.
Gao, P.; Wang, H.; Jin, Z. Thermochimica. Acta 2004, 414, 59. crossref(new window)

26.
Brunauer, B.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723. crossref(new window)