Advanced SearchSearch Tips
Synthesis and Physicochemical Properties of Schiff Base Macrocyclic Ligands and Their Transition Metal Chelates
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Synthesis and Physicochemical Properties of Schiff Base Macrocyclic Ligands and Their Transition Metal Chelates
Rafat, Fouzia; Siddiqi, K.S.;
  PDF(new window)
Tetraaza Schiff base macrocyclic ligands, , and their transition metal chelates have been synthesized and characterized by elemental analyses, IR, electronic, EPR and NMR spectra, TGA and magnetic measurements. The molar conductance of one milli-molar solution of the complexes measured in DMF indicates that the divalent metal complexes are nonelectrolyte while those of trivalent metal ion, are 1:1 electrolytic in the same solvent. The reduction of Racah parameter from the free ion value confirms the presence of considerable covalence of metal ligand sigma bond in the Co(II) and Mn(II) complexes. The EPR spectra of Cu(II) complexes at room temperature shows axial symmetry indicating a ground state with significant covalent character. The thermal analysis suggests that the complexes do not contain water molecules because only the metal is left as residue.
Spectroscopic measurements;Triethylenetetramine;Macrocyclic ligands;
 Cited by
Ligand assisted copper-catalyzed Ullmann cross coupling reaction of bromaminic acid with amines, Chinese Journal of Chemical Engineering, 2016, 24, 8, 1000  crossref(new windwow)
Molecular structure design and soft template synthesis of aza-, oxaaza- and thiaazamacrocyclic metal chelates in the gelatin matrix, Arabian Journal of Chemistry, 2017, 10, 1, 47  crossref(new windwow)
Mishra, A. K.; Panwar, P.; Chopra, M.; Sharma, R. K.; Chatal, J. New J. Chem. 2003, 27, 1054. crossref(new window)

Maneiro, M.; Bermejo, M. R.; Fernandez, M. I.; Gomez-Forneas, E.; Gonzalez-Noya, M.; Tyryshkin, A. M. New J. Chem. 2003, 27, 727. crossref(new window)

Dismukes, G. C. Chem. Rev. 1996, 96, 2909. crossref(new window)

Cozzi, P. G.; Dolci, L. S.; Garelli, A.; Montalti, M.; Prodi, L.; Zaccheroni, N. New J. Chem. 2003, 27, 692. crossref(new window)

Liu, Z.; Anson, F. C. Inorg. Chem. 2000, 39, 274. crossref(new window)

Munoz-Hernandez, M.; McKee, M. L.; Keizer, T. S.; Yearwood, B. C.; Atwood, D. A. J. Chem. Soc. Dalton Trans. 2002, 410.

Leung, W.; Chan, E. Y. Y.; Chow, E. K. F.; Williams, I. D.; Peng, S. J. Chem. Soc. Dalton Trans. 1996, 1229.

Atwood, D. A.; Harvey, M. J. Chem. Rev. 2001, 101, 37. crossref(new window)

Morris, G. A.; Zhou, H.; Stern, C. L.; Nguyen, S. T. Inorg. Chem. 2001, 40, 3222. crossref(new window)

Geary, W. J. Coord. Chem. Rev. 1971, 7, 81. crossref(new window)

Nakamato, K. IR and Raman Spectra of Inorganic and Coordination Compounds; 4th ed.; John Wiley: New York, 1986.

Patra, G. K.; Goldberg, I. New J. Chem. 2003, 27, 1124. crossref(new window)

Diebold, A.; Elbouadili, A.; Hagen, K. S. Inorg. Chem. 2000, 39, 391.

Gebbink, R. J. M. K.; Jonas, R. T.; Goldsmith, C. R.; Stack, T. D. P. Inorg. Chem. 2002, 41, 4633. crossref(new window)

Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; 6th ed.; Wiley Interscience: 1999, p 867.

Ghiladi, R. A.; Kretzer, R. M.; Guzei, I.; Rheingold, A. L.; Neuhold, Y.; Hatwell, R.; Zuberbuhler, A. D.; Karlin, K. D. Inorg. Chem. 2001, 40, 5754. crossref(new window)

Bernhardt, P. V.; Moore, E. G.; Riley, M. J. Inorg. Chem. 2001, 40, 5799. crossref(new window)

Lever, A. B. P. Inorganic electronic spectroscopy; 2nd ed.; Elsevier Amsterdam: 1984.

Girgis R. A. Y.; Balch A. L. Inorg. Chem. 1975, 14, 2724. crossref(new window)

Wang, S.; Hou, Y.; Wang, E.; Li, Y.; Xu, L.; Peng, J.; Liu, S.; Hu, C. New J. Chem. 2003, 27, 1144. crossref(new window)

Su, C.; Liao, S.; Wanner, M.; Fiedler, J.; Zhang, C.; Kang, B.; Kaim, W. J. Chem. Soc. Dalton Trans. 2003, 189.

Procter, I. M.; Hathaway, B. J.; Nicholls, P. J. Chem. Soc.(A), 1968, 1678. crossref(new window)