JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Efficient Photocatalytic Degradation of Salicylic Acid by Bactericidal ZnO
Karunakaran, Chockalingam; Naufal, Binu; Gomathisankar, Paramasivan;
  PDF(new window)
 Abstract
Salicylic acid degrades at different rates under UV-A light on , ZnO, CuO, , and nanocrystals and all the oxides exhibit sustainable photocatalysis. While ZnO-photocatalysis displays Langmuir-Hinshelwood kinetics the others follow first order on [salicylic acid]. The degradation on all the oxides enhance with illumination intensity. Dissolved oxygen is essential for the photodegradation. ZnO is the most efficient photocatalyst to degrade salicylic acid. Besides serving as the effective photocatalyst to degrade salicylic acid it also acts as a bactericide and inactivates E.coli even in absence of direct light.
 Keywords
Semiconductor;Nanoparticles;Photodegradation;Bactericidal activity;
 Language
English
 Cited by
1.
Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method, Ceramics International, 2013, 39, 3, 2811  crossref(new windwow)
 References
1.
Hu, X.; Li, G.; Yu, J. C. Langmuir 2010, 26, 3031. crossref(new window)

2.
Hagfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49. crossref(new window)

3.
Chhor, K.; Bocquet, J. F.; Colbeau-Justin, C. Mater. Chem. Phys. 2004, 86, 123. crossref(new window)

4.
Nagaveni, K.; Sivalingam, G.; Hegde, M. S.; Madras, G. Environ. Sci. Technol. 2004, 38, 1600. crossref(new window)

5.
Fotou, G. P.; Pratsinis, S. E. Chem. Eng. Commun. 1996, 151, 251. crossref(new window)

6.
Tomkiewicz, M. Catal. Today 2000, 58, 115. crossref(new window)

7.
Matthews, R. W. J. Phys. Chem. 1987, 91, 3328. crossref(new window)

8.
Wang, W.; Song, M. Micropor. Mesopor. Mater. 2006, 96, 255. crossref(new window)

9.
Hidaka, H.; Honjo, H.; Horikoshi, S.; Serpone, N. Catal. Commun. 2006, 7, 331. crossref(new window)

10.
Matthews, R. W. Wat. Res. 1991, 25, 1169. crossref(new window)

11.
Sun, B.; Smirniotis, P. G.; Boolchand, P. Langmuir 2005, 21, 11398.

12.
Hodak, J.; Quinteros, C.; Litter, M. I.; Roman, E. S. J. Chem. Soc. Faraday Trans. 1996, 92, 5081. crossref(new window)

13.
Colon, G.; Hidalgo, M. C.; Navio, J. A. Appl. Catal., A 2002, 231, 185. crossref(new window)

14.
Anderson, C.; Bard, A. J. J. Phys. Chem. B 1997, 101, 2611. crossref(new window)

15.
Ismail, M.; Bousselmi, L.; Zahraa, O. J. Photochem. Photobiol. A 2011, 222, 314. crossref(new window)

16.
Shinde, S. S.; Bhosale, C. H.; Rajpure, K. Y. J. Mol. Catal. A 2011, 347, 65. crossref(new window)

17.
Jiang, W.; Mashayekhi, H.; Xing, B. Environ. Pollut. 2009, 157, 1619. crossref(new window)

18.
Hu, X.; Cook, S.; Wang, P.; Hwang, H.-M. Sci. Total Environ. 2009, 407, 3070. crossref(new window)

19.
Xu, Y.; Schoonen, M. A. A. Am. Mineral. 2000, 85, 543.

20.
Karunakaran, C.; Senthilvelan, S.; Karuthapandian, S. J. Photochem. Photobiol. A 2005, 172, 207. crossref(new window)

21.
Vincze, L.; Kemp, T. J. J. Photochem. Photobiol. A 1995, 87, 257. crossref(new window)

22.
Karunakaran, C.; Sujatha, M. P.; Gomathisankar, P. Monatsh. Chem. 2009, 140, 1269. crossref(new window)

23.
Karunakaran, C.; Senthilvelan, S. J. Mol. Catal. A 2005, 233, 1. crossref(new window)