JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Carbon Nanotubes Doped with Nitrogen, Pyridine-like Nitrogen Defects, and Transition Metal Atoms
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Carbon Nanotubes Doped with Nitrogen, Pyridine-like Nitrogen Defects, and Transition Metal Atoms
Mananghaya, Michael R.;
  PDF(new window)
 Abstract
Dopants and defects can be introduced as well as the intercalation of metals into single wall carbon nanotubes (SWCNTs) to modify their electronic and magnetic properties, thus significantly widening their application areas. Through spinpolarized density functional theory (DFT) calculations, we have systemically studied the following: (i) (10,0) and (5,5) SWCNT doped with nitrogen (), (ii) (10,0) and (5,5) SWCNT with pyridine-like defects (3NV-), and (iii) chemical functionalization of (10,0) and (5,5) 3NV- with 12 different transition metals (TMs) (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pd, and Pt). Attention was done in searching for the most stable configurations, deformation, calculating the formation energies, and exploring the effects of the doping concentration of nitrogen and pyridine-like nitrogenated defects on the electronic properties of the nanotubes. Also, calculating the corresponding binding energies and effects of chemical functionalization of TMs on the electronic and magnetic properties of the nanotubes has been made. We found out that the electronic properties of SWCNT can be effectively modified in various ways, which are strongly dependent not only on the concentration of the adsorbed nitrogen but also to the configuration of the adsorbed nitrogen impurities, the pyridine-like nitrogenated defects, and the TMs absorbed; due to the strong interaction between the d orbitals of TMs and the p orbitals of N atoms, the binding strengths of TMs with the two 3NV- are significantly enhanced when compared to the pure SWCNTs.
 Keywords
Binding energy;Density functional theory;Nitrogenated single-walled carbon nanotubes;Transition metals;
 Language
English
 Cited by
1.
Stability and Electronic Properties of the Adsorption of Molecular Hydrogen on Metal-containing Single-walled Carbon Nanotubes,;

대한화학회지, 2015. vol.59. 5, pp.429-433 crossref(new window)
1.
Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube, Materials Chemistry and Physics, 2016, 180, 357  crossref(new windwow)
2.
Hydrogen adsorption on boron nitride nanotubes functionalized with transition metals, International Journal of Hydrogen Energy, 2016, 41, 31, 13531  crossref(new windwow)
3.
Understanding the structure and electronic properties of N-doped graphene nanoribbons upon hydrogen saturation, Journal of Chemical Sciences, 2014, 126, 6, 1737  crossref(new windwow)
4.
Stability and Electronic Properties of the Adsorption of Molecular Hydrogen on Metal-containing Single-walled Carbon Nanotubes, Journal of the Korean Chemical Society, 2015, 59, 5, 429  crossref(new windwow)
5.
Theoretical investigation of the solubilization of COOH-functionalized single wall carbon nanotubes in water, Journal of Molecular Liquids, 2016, 215, 780  crossref(new windwow)
6.
Hydrogen adsorption of novel N-doped carbon nanotubes functionalized with Scandium, International Journal of Hydrogen Energy, 2015, 40, 30, 9352  crossref(new windwow)
7.
Modeling of single-walled carbon nanotubes functionalized with carboxylic and amide groups towards its solubilization in water, Journal of Molecular Liquids, 2015, 212, 592  crossref(new windwow)
8.
Adsorption of Mercury(II) Chloride and Carbon Dioxide on Graphene/Calcium Oxide (0 0 1), Korean Journal of Materials Research, 2016, 26, 6, 298  crossref(new windwow)
9.
Scandium and Titanium Containing Single-Walled Carbon Nanotubes for Hydrogen Storage: a Thermodynamic and First Principle Calculation, Scientific Reports, 2016, 6, 1  crossref(new windwow)
10.
Hydrogen adsorption of nitrogen-doped carbon nanotubes functionalized with 3d-block transition metals, Journal of Chemical Sciences, 2015, 127, 4, 751  crossref(new windwow)
 References
1.
Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105. crossref(new window)

2.
Zhao, Y. L.; Stoddart, J. F. Acc. Chem. Res. 2009, 42, 1161. crossref(new window)

3.
Khabashesku, V. N.; Billups, W. E.; Margrave, J. L. Acc. Chem. Res. 2002, 35, 1087. crossref(new window)

4.
Niyogi, S.; Hamon, M. A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M. E.; Haddon, R. C. Acc. Chem. Res. 2002, 35, 1105. crossref(new window)

5.
Banerjee, S.; Hermraj-Benny, T.; Wong, S. S. Adv. Mater. 2005, 17, 17. crossref(new window)

6.
David, A. B.; Khlobystov, A. N. Chem. Soc. Rev. 2006, 35, 637. crossref(new window)

7.
Sen, R.; Satishkumar, B. C.; Govindaraj, A.; Harikumar, K. R.; Renganathan, M. K.; Rao, C. N. R. J. Mater. Chem. 1997, 12, 2335.

8.
Terrones, M.; Terrones, H.; Grobert, N.; Hsu, W. K.; Zhu, Y. Q.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M. Ph Kohler-Redlich, Ruhle, M.; Zhang, J. P.; Cheetham, A. K. Appl. Phys. Lett. 1999, 75, 3932. crossref(new window)

9.
Czerw, R.; Terrones, M.; Charlier, J. C.; Blase, X. B.; Foley, R.; Kamalakaran, N.; Grobert, H.; Terrones, D.; Tekleab, P. M.; Ajayan, W.; Blau, M.; Carroll, D. L. Nano Lett. 2001, 1, 457. crossref(new window)

10.
Terrones, M.; Ajayan, P. M.; Banhart, F.; Blase, X.; Carroll, D. L.; Charlier, J. C.; Czerw, R.; Foley, B.; Grobert, N.; Kohler-Redlich, Ph.; Ruhle, M.; Seeger, T.; Terrones, H. Appl. Phys. A: Mater. Sci. Process 2002, 74, 355. crossref(new window)

11.
Golberg, D.; Dorozhkin, P. S.; Bando, Y.; Dong, Z. C.; Tang, C. C.; Uemura, Y.; Grobert, N.; Reyes-Reyes, M.; Terrones, H.; Terrones, M. Appl. Phys. A: Mater. Sci. Process 2003, 76, 499. crossref(new window)

12.
Villalpando-Paez, F.; Romero, A. H.; M oz-Sandoval, E.; Martinez, L. M.; Terrones, H.; Terrones, M. Chem. Phys. Lett. 2004, 386, 137. crossref(new window)

13.
Suenage, K.; Johansson, M. P.; Hellgren, N.; Broitman, E.; Wallenberg, L. R.; Colliex, C.; Sundgren, J.; Hultman, L. Chem. Phys. Lett. 1999, 300, 695. crossref(new window)

14.
Lim, S. H.; Elim, H. I.; Gao, X. Y.; Wee, A. T. S.; Ji, W.; Lee, J. Y.; Lin, J. Phys. Rev. B 2006, 73, 045402. crossref(new window)

15.
Droppa Jr., R.; Ribeiro, C. T. M.; Zanatta, A. R.; dos Santos, M. C.; Alvarez, F. Phys. Rev. B 2004, 69, 045405. crossref(new window)

16.
Villalpando-Paez, F.; Zamudio, A.; Elias, A. L.; Son, H.; Barros, E.; Chou, B. S. G.; Kim, Y. A.; Muramatsu, H.; Hayashi, T.; Kong, J.; Terrones, H.; Dresselhaus, G.; Endo, M.; Terrones, M.; Dresselhaus, M. S. Chem. Phys. Lett. 2006, 424, 345.

17.
Yu, S. S.; Wen, Q. B.; Zheng, W. T.; Jiang, Q. Nanotechnology 2007, 18, 165702. crossref(new window)

18.
Qiao, L.; Zheng, W. T.; Xu, H.; Zhang, L.; Jiang, Q. J. Chem. Phys. 2007, 126, 164702. crossref(new window)

19.
Min, Y. S.; Bae, E. J.; Kim, U. J.; Lee, E. H.; Park, N. J.; Hwang, C. S.; Park, W. J. Appl. Phys. Lett. 2008, 93, 043113. crossref(new window)

20.
Rocha, A. R.; Rossi, M.; Fazzio, A.; da Silva, A. J. R. Phys. Rev. Lett. 2008, 100, 176803. crossref(new window)

21.
Li, Y. F.; Zhou, Z.; Wang, L. B. J. Chem. Phys. 2008, 129, 104703. crossref(new window)

22.
Gong, K. P.; Du, F.; Xia, Z. X.; Durstock, M.; Dai, L. M. Science 2009, 323, 760. crossref(new window)

23.
Ayala, P.; Arenal, R.; Rummeli, M.; Rubio, A.; Pichler, T. Carbon 2010, 48, 575. crossref(new window)

24.
Yoon, H.; Ko, S.; Jang, J. Chem. Commun. 2007, 14, 1468.

25.
Shao, Y.; Sui, J.; Yin, G.; Gao, Y. Appl. Catal., B 2008, 78, 89.

26.
Su, F. B.; Tian, Z. Q.; Poh, C. K.; Wang, Z.; Lim, S. H.; Liu, Z. L.; Lin J. Y. Chem. Mater. 2010, 27, 832.

27.
Li, X. G.; Park, S.; Popov, B. N. J. Power Source 2010, 195, 445. crossref(new window)

28.
Shao, Y. Y.; Liu, J.; Wang, Y.; Lin, Y. H. J. Mater. Chem. 2009, 19, 46. crossref(new window)

29.
Gregory, G.; Wildgoose, C.; Banks, E.; Richard, G. C. Small 2006, 2, 182. crossref(new window)

30.
Georgakilas, V.; Gournis, D.; Tzizios, V.; Pasquato, L.; Guldi, D. M.; Prato, M. J. Mater. Chem. 2007, 17, 2679. crossref(new window)

31.
White, R. J.; Luque, R.; Budairn, V. L.; Clark, J. H.; Macquarrie, D. J. Chem. Soc. Rev. 2009, 38, 481. crossref(new window)

32.
Yue, B.; Ma, Y. W.; Tao, H. S.; Yu, L. S.; Jian, G. Q.; Wang, X. Z.; Wang, X. S.; Lu, Y. N.; Hu, Z. J. Mater. Chem. 2008, 18, 1747. crossref(new window)

33.
Jiang, J. S.; Ma, Y. W.; Jian, G. Q.; Tao, H. S.; Wang, X. Z.; Fan, Y. N.; Lu, Y. N.; Hu, Z.; Chen, Y. Adv. Mater. 2009, 21, 4953. crossref(new window)

34.
Zhou, Y.; Pasquareli, R.; Holme, T.; Berry, J.; Ginley, D.; O'Hayre, D. R. J. Mater. Chem. 2009, 19, 7830. crossref(new window)

35.
Lepro, X.; Terres, E.; Vega-Cantú, Y.; Rodriguez-Macias, F. J.; Muramatsu, H.; Kim, Y. A.; Hayahsi, T.; Endo, M.; Torres, M.; Terrones, M. Chem. Phys. Lett. 2008, 463, 124. crossref(new window)

36.
Chen, Z.; Higgins, D.; Tao, H. S.; Hsu, R. S.; Chen, Z. W. J. Phys. Chem. C 2009, 113, 21008. crossref(new window)

37.
Sadek, A. Z.; Zhang, C.; Hu, Z.; Partridge, J. G.; McCulloch, D. G.; Wlodarski, W.; Kalantar-zadeh, K. J. Phys. Chem. C 2010, 114, 238. crossref(new window)

38.
Yang, S. H.; Shin, W. H.; Lee, J. W.; Kim, H. S.; Kang, J. K.; Kim, Y. K. Appl. Phys. Lett. 2007, 90, 013103. crossref(new window)

39.
Li, Y. H.; Hung, T. H.; Chen, C. W. Carbon 2009, 47, 850. crossref(new window)

40.
Feng, H.; Ma, J.; Hu, Z. J. Mater. Chem. 2010, 20, 1702. crossref(new window)

41.
Titov, A. V.; Zapol, P.; Kral, P.; Liu, D. J.; Iddir, H.; Baishya, K.; Curtiss, L. A. J. Phys. Chem. C 2009, 113, 21629. crossref(new window)

42.
An, W.; Turner, C. H. J. Phys. Chem. C 2009, 113, 7069. crossref(new window)

43.
Stoyanov, S.; Titov, A. V.; Krl, P. Coord. Chem. Rev. 2009, 253, 2852. crossref(new window)

44.
Delley, B. J. Chem. Phys. 1990, 92, 508. crossref(new window)

45.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. crossref(new window)

46.
Delley, B. J. Quant. Chem. 1998, 69, 423. crossref(new window)

47.
Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. crossref(new window)

48.
Sun, C.; Wang, H.; Hayashi, M.; Chen, L.; Chen, K. J. Am. Chem. Soc. 2006, 128, 8368. crossref(new window)

49.
Choi, H. C.; Bae, S. Y.; Park, J.; Seo, K.; Kim, C.; Kim, B.; Song, H. J.; Shin, H. J. Appl. Phys. Lett. 2004, 85, 5742. crossref(new window)

50.
Terrones, M.; Kamalakaran, R.; Seeger, T.; Ruhle, M. Chem. Commun. 2000, 23, 2335.

51.
Durgun, E.; Dag, S.; Bagci, V.; Gulseren, T.; Yildirim, C. S. Phys. Rev. B 2003, 67, 201401. crossref(new window)

52.
Durgun, E.; Dag, S.; Ciraci, S.; Gulseren, O. J. Phys. Chem. B 2004, 108, 575. crossref(new window)

53.
Pan, H.; Feng, Y. P.; Lin, J. Y. Phys. Rev. B 2004, 70, 245425. crossref(new window)

54.
Zhao, J.; Park, H.; Han, J.; Lu, J. P. J. Phys. Chem. B 2004, 108, 4227. crossref(new window)

55.
Kong, K.; Han, S.; Ihm, J. Phys. Rev. B 1999, 60, 6074. crossref(new window)

56.
Hirshfeld, F. L. Theor. Chim. Acta 1997, 44, 129. crossref(new window)