Advanced SearchSearch Tips
Photo-Assisted Sondegradation of Hydrogels in the Presence of TiO2 Nanoparticles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Photo-Assisted Sondegradation of Hydrogels in the Presence of TiO2 Nanoparticles
Ebrahimi, Rajabali; Tarhandeh, Giti; Rafiey, Saeed; Narjabadi, Mahsa; Khani, Hamed;
  PDF(new window)
The degradation of one of the commercially important hydrogel based on acrylic acid and acryl amide, (acrylic acid-co-acryl amide) hydrogels, by means of ultrasound irradiation and its combination with heterogeneous () was investigated. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. The extent of sonolytic degradation increased with increasing ultrasound power (in the range 30-80 W). sonophotocatalysis led to complete (acrylic acid-co-acryl amide) hydrogels degradation with increasing catalyst loading, while, the presence of in the dark generally had little effect on degradation. Therefore, emphasis was totally on the sonolytic and sonophotocatalytic degradation of hydrogels and a synergy effect was calculated for combined degradation procedures (Ultrasound and Ultraviolet) in the presence of nanoparticles. sonophotocatalysis was always faster than the respective individual processes due to the enhanced formation of reactive radicals as well as the possible ultrasound-induced increase of the active surface area of the catalyst. A kinetics model based on viscosity data was used for estimation of degradation rate constants at different conditions and a negative order for the dependence of the reaction rate on total molar concentration of (acrylic acid-co-acryl amide) hydrogels solution within the degradation process was suggested.
(acrylic acid-co-acryl amide) hydrogels;Degradation;Sonophotocatalysis;Viscosity; nanoparticles;
 Cited by
Thermal and sonochemical degradation kinetics of poly(n-butyl methacrylate-co-alkyl acrylates): Variation of chain strength and stability with copolymer composition, Polymer Engineering & Science, 2013, 53, 7, 1542  crossref(new windwow)
Kauzmann, W.; Eyring, H. The Viscous Flow of Large Molecules. J. Am. Chem. Soc. 1940, 62, 3113. crossref(new window)

Flosdorf, E. W.; Chambers, L. A. The chemical action of audible sound. J. Am. Chem. Soc. 1933, 55, 3051. crossref(new window)

Sato, T. Effect of turnover rate on the change of concentration of an unstable compound in a dip coating bath. J. Coat. Technol. 2000, 72, 81.

Czechowska-Biskupa, R.; Rokita, B.; Lotfy, S.; Ulanski, P.; Rosiak, J. M. Degradation of chitosan and starch by 360-kHz ultrasound. Cabohydr. Polym. 2005, 60, 175. crossref(new window)

Lorimer, J. P.; Mason, T. J.; Cuthbert, T. C.; Brookeld, E. A. Effect of ultrasound on the degradation of aqueous native dextran. Ultrasonics Sonochemistry, 1995, 2, 555.

Bradbury, J. H.; O'Shea, J. The effect of ultrasonic irradiation on proteins, J. Aust. J. Biol. Sci. 1973, 26, 583.

Freifelder, D.; Davison, P. F. Studies on the sonic degradation of deoxyribonucleic acid. Biophys. J. 1962, 2, 235. crossref(new window)

Paulusse, J. M. J.; Sijbesma, R. P. Reversible mechanochemistry of a Pd (II) coordination polymer. Angew. Chem. Int. Ed. 2004, 43, 4460. crossref(new window)

Karthikeyan, S.; Potisek, S. L.; Piermattei, A.; Sijbesma, R. P. Highly efficient mechanochemical scission of silvercarbene coordination polymers. J. Am. Chem. Soc. 2008, 130, 14968. crossref(new window)

Paulusse, J. M. J.; Sijbesma, R. P. Selectivity of mechanochemical chain scission in mixed palladium(II) and platinum(II) coordination polymers. Chem. Commun. 2008, 37, 4416.

Price, G. J. In Advances in Sonochemistry; Mason, T. J., Ed.; JAI Press: Cambridge, 1990; Vol. 1.

Suslick, K. S.; Price, G. Application of ultrasound to materials chemistry. J. Annu. Rev. Mater. Sci. 1999, 29, 295. crossref(new window)

Jellinek, H. H. G. Degradation of vinyl polymers; Academic Press: New York, 1955.

Price, G. J. The use of ultrasound for the controlled degradation of polymer solutions. In Advances in Sonochemistry; JAI Press, 1990.

Li, X.; Cui, Y. Ultraviolet-Induced Decomposition of Acrylic Acid-Based Superabsorbent Hydrogels Crosslinked with N,N-Methylenebisacrylamide. Appl. Polym. Sci. 2008, 108, 3435. crossref(new window)

Caddick, S. Microwave Assisted Organic Reactions. Tetrahedron 1995, 51, 10403. crossref(new window)

Li, Y.; Li, J.; Guo, S.; Li, H. Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanism in the presence of ultrasonic irradiation. Ultrasonyics Sonochemistry 2005, 12, 183. crossref(new window)

Basedow, A. M.; Ebert, K. H. Ultrasonic degradation of polymers in solution. Adv. Polym. Sci. 1977, 22, 83. crossref(new window)

Vijayalakshmi, S. P.; Madras, G. Effect of initial molecular weight and solvents on the ultrasonic degradation of poly(ethylene oxide). Polym. Degrad. Stab. 2005, 90, 116. crossref(new window)

Daraboina, N.; Madras, G. Kinetics of the ultrasonic degradation of poly (alkyl methacrylates). Ultrasonics Sonochemistry 2009, 16, 273. crossref(new window)

Gronroons, A.; Pirkonen, P.; Heikkinen, J.; Ihalainen, J.; Mursunen, H.; Sekki, H. Ultrasonic depolymerisation of aqueous polyvinyl alcohol. Ultrasonics Sonochemistry 2001, 8, 259. crossref(new window)

Taghizadeh, M. T.; Asadpour, T. Effect of molecular weight on the ultrasonic degradation of poly (vinyl pyrrolidone). Ultrasonics Sonochemistry 2009, 16, 280. crossref(new window)

Taghizadeh, M. T.; Bahadori, A. 2009, Degradation kinetics of poly(vinylpyrrolidone) under ultrasonic irradiation. J. Polym. Res. 2009, 16, 545. crossref(new window)

Crum, L. A. Comments on the evolving eld of sonochemistry by a cavitation physicist. Ultrasonics Sonochemistry 1995, 2, 147. crossref(new window)

Stephanis, C. G.; Hatiris, J. G.; Mourmouras, D. E. The process (mechanism) of erosion of soluble brittle materials caused by cavitation. Ultrasonics Sonochemistry 1997, 4, 269. crossref(new window)

Mason, T. J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev. 1997, 26, 443. crossref(new window)

Mason, T. J.; Cordmas, E. D. Ultrasonic intensication of chemical processing and related operations. T. I. Chem. Eng-Lond. 1996, 74, 511.

Portenlanger, G.; Heusinger, H. Polymer formation from aqueous solutions of a D-glucose by ultrasound and ${\gamma}$-rays. Ultrasonics Sonochemistry 1994, 1, 125. crossref(new window)

Ashokkumar, M.; Grieser, F. Ultrasound assisted chemical processes. Rev. Chem. Eng. 1999, 15, 41. crossref(new window)

Cains, P. W.; Martin, P. D.; Price, C. J. The use of ultrasound in industrial chemical synthesis and crystallization. 1. Applications to synthetic chemistry. Org. Proc. Res. Dev. 1998, 1, 234.

Wang, X.; Yao, Z.; Wang, J.; Guo, W.; Li, G. Degradation of reactive brilliant red in aqueous solution by ultraso nic cavitation. Ultrasonics Sonochemistry 2008, 15, 43. crossref(new window)

Berberidou, C.; Poulios, I.; Xekoukoulotakis, N. P.; Mantzavinos, D. Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Appl. Catal. B: Environ. 2007, 74, 63. crossref(new window)

Stock, N. L.; Peller, J.; Vinodgopal, K.; Kamat, P. V. Combinative sonolysis and photocatalysis for textile dye degradation. Environ. Sci. Technol. 2000, 34, 1747. crossref(new window)

Bejarano-Perez, N. J.; Suarez-Herrera, M. F. Sonophotocatalytic degradation of congo red and methyl orange in the presence of $TiO_2$ as a catalyst. Ultrasonics Sonochemistry 2007, 14, 589. crossref(new window)

Vinu, R.; Madras, G. Kinetics of sonophotocatalytic degradation of anionic dyes with nano-$TiO_2$. Environ. Sci. Technol. 2009, 43, 473. crossref(new window)

Kritikos, D. E.; Xekoukoulotakis, N. P.; Psillakis, E.; Mantzavinos, D. Hotocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation. Water. Res. 2007, 41, 2236. crossref(new window)

Wang, S.; Gong, Q.; Liang, J. Sonophotocatalytic degradation of methyl orange by carbon nanotube/$TiO_2$ in aqueous solutions. Ultrasonics Sonochemistry 2009, 16, 205. crossref(new window)

Nakayama, K.; Ooi, T.; Kinoshita, S. Degradation of synthetic water soluble polymers by hydro oqinone per oxidase. J. Ferment. Bioeng. 1997, 84, 213. crossref(new window)

Aarthi, T.; Shaama, M. S.; Madras, G. Degradation of water soluble under combined ultrasonic and ultraviolet radiation. Ind. Eng. Chem. Res. 2007, 27, 6204.

Saien, J.; Delavari, H.; Solymani, A. R. Sono-assisted photocatalytic degradation of styrene-acrylic acid copolymer in aqueous media with nano titania particles and kinetic studies, J. Hazardous Materials, 2007, 177, 1031. crossref(new window)

Wang, Z. S.; Huang, C. H.; Wang, L.; Wei, M.; Jin, L. P.; Li, N. Q. Photoelectric conversion properties of nanocrystalline $TiO_2$ electrodes sensitizedwith. J. Phys. Chem. B 2000, 104, 9676. crossref(new window)

Aguado, J.; van Grieken, R.; Lopez-Munoz, M. J.; Marugan, J. Removal of cyanides in waste water by supported $TiO_2$-based photocatalysts. Catal. Today 2002, 75, 95. crossref(new window)

Sullivan, C. Sonochemistry: a sound investment, Chem. Ind. 1992, 18, 365.

Joseph, C. G.; Gianluca, L. P.; Awang, B.; Krishnaiah, D. Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry 2009, 16, 583. crossref(new window)

Ebrahimi, R. Influence of Ultrasonic parameters in degradation of acrylic acid co acrylamide based superabsorbent hydrogels crosslinked with NMBA. Iranian Polym. J. 2011, 43, in press.

van Krevelen, D. W. Properties of Polymers, 3rd ed.; Elsevier: Amsterdam, 1990.

Harkal, U. D.; Gogate, P. R.; Pandit, A. B.; Shenoy, M. A. Ultrasonic degradation of poly(vinyl alcohol) in aqueous solution. Ultrasonics Sonochemistry 2006, 13, 423. crossref(new window)

Glynn, P. A. R.; Van Der Hoff, B. M. E.; Reilly, P. M.; General, A. Model for Prediction of Molecular Weight Distributions of Degraded Polymers. Development and Comparison with Ultrasonic Degradation. J. Macromol. Sci., Part A: Pure Appl. Chem. 1972, 6, 1653. crossref(new window)

Caruso, M. M.; Davis, D. A.; Shen, Q.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Mechanically-Induced Chemical Changes in Polymeric Materials. Chem. Rev. 2009, 109, 5755. crossref(new window)

Taghizadeh, M. T.; Mehrdad, A. Calculation of the rate constant for the ultrasonic degradation of aqueous solutions of polyvinyl alcohol by viscometry. Ultrasonics Sonochemistry 2003, 10, 309.

Sarkar, J.; Kumar, R.; Madras, G. Ultrasonic degradation of polybutadiene and isotactic polypropylene. Polym. Degrad. Stab. 2004, 85, 555. crossref(new window)

Akyuz, A.; Catalgil-Giz, H.; Giz, A. Effect of Solvent Characteristics on the Ultrasonic Degradation of Poly (vinylpyrrolidone) Studied by On-line Monitoring. Macromol. Chem. Phys. 2009, 210, 1331.

Berkowski, K. L.; Potisek, S. L.; Hickenboth, C. R.; Moore, J. S. Ultrasound-Induced Site-Specific Cleavage of Azo-Functionalized Poly(ethylene glycol). Macromolecules 2005, 38, 8975. crossref(new window)

Domard, A.; Popa-Nita, S.; Lucas, J. M.; Ladaviere, C.; David, L. Mechanisms Involved During the Ultrasonically Induced Depolymerization of Chitosan: Characterization and Control Biomacromolecules 2009, 10, 1203.

Wu, T.; Zivanovic, S.; Hayes, D. G.; Weiss, J. Efcient Reduction of Chitosan Molecular Weight by High-Intensity Ultrasound: Underlying Mechanism and Effect of Process Parameters. J. Agric. Food Chem. 2008, 56, 5112. crossref(new window)

Madras, G.; Chattopadhyay, S. Effect of solvent on ultrasonic degradation of poly (vinyl acetate). Polym. Degrad. Stab. 2001, 71, 273. crossref(new window)

Nguyen, T. G.; Kausch, H. H. Mechanochemical degradation in transient elongational flow. Adv. Polym. Sci. 1992, 100, 73. crossref(new window)

Lorimer, J. P.; Mason, T. J.; Cuthbert, T. C.; Brookeld, E. A. Effect of ultrasound on the degradation of aqueous native dextran. Ultrasonics Sonochemistry 1995, 2, 555.

Thomas, B. B.; Alexander, W. J. Ultrasonic degradation of cellulose nitrate:Relation between initial and nal average and distribution of DP. J. Polym. Sci. 1955, 15, 361. crossref(new window)

Price, G. J.; Smith, P. F. Ultrasonic degradation of polymer solutions-III: The effect of changing solvent and solution concentration. Eur. Polym. J. 1993, 29, 419. crossref(new window)

Biskup, R. C.; Rokita, B.; Lotfy, S.; Ulanski, P.; Rosiak, J. M. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydr. Polym. 2005, 60, 175. crossref(new window)

Silva, A. M. T.; Nouli, E.; Carmo-Apolinario, A. C.; Xekoukoulotakis, N. P.; Mantzavinos, D. Sonophotocatalytic/ $H_2O_2$ degradation of phenolic compounds in agro-industrial efuents. Catal. Today 2007, 124, 232. crossref(new window)

Taghizadeh, M. T.; Abdollahi, R. Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of $TiO_2$ nanoparticles. Ultrasonics Sonochemistry 2011, 18, 149. crossref(new window)

Mrowetz, M.; Pirola, C.; Selli, E. Degradation of organic water pollutants through sonophotocatalysi in the presence of $TiO_2$. Ultrasonics Sonochemistry 2003, 10, 247. crossref(new window)

Shimizu, N.; Ogino, C.; Dadjour, M. F.; Murata, T. Sonocatalytic degradation of methylene blue with $TiO_2$ pellets in water. Ultrasonics Sonochemistry 2007, 14, 184. crossref(new window)

Wang, J.; Pan, Z.; Zhang, Z.; Zhang, X.; Wen, F.; Ma, T.; Jiang, Y.; Wang, L.; Xu, L.; Kang, P. Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities. Ultrasonics Sonochemistry 2006, 13, 493. crossref(new window)