JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A New Charge Analysis Derived From the Results of Semi-Emprical Mo-Lcao Calculation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A New Charge Analysis Derived From the Results of Semi-Emprical Mo-Lcao Calculation
Yilmaz, Hayriye; Ceyhan, Emre Cahit; Guzel, Yahya;
  PDF(new window)
 Abstract
In this study we present a new approach for computing the partial atomic charge derived from the wavefunctions of molecules. This charge, which we call the "y_charge", was calculated by taking into account the energy level and orbital populations in each molecular orbital (MO). The charge calculations were performed in the software, which was developed by us, developed using the C# programming language. Partial atomic charges cannot be calculated directly from quantum mechanics. According to a partitioning function, the electron density of constituent molecular atoms depends on the electrostatic attraction field of the nucleus. Taking into account the Boltzmann population of each MO as a function of its energy and temperature we obtain a formula of partial charges.
 Keywords
Partial atomic charges;Predictions of molecular properties;Coulomb potential;
 Language
English
 Cited by
 References
1.
Bachrach, S. M. In Reviews in Computational Chemistry; K.B. Lipkowitz, D.B. Boyd, Eds.; VCH: New York, 1993; Vol. 5, p 171.

2.
Cramer, C.; Truhlar, D. Theor. Chim. Acta 1997, 98, 206.

3.
Li, J.; Zhu, T.; Cramer, C. J.; Truhlar, D. G. New Class IV Charge Model for Extracting Accurate Partial Charges from Wave Functions. J. Phys. Chem. A 1998, 102, 1820. crossref(new window)

4.
Naray-Szabo, G.; Ferenczy, G. Chem. Rev. 1995, 95, 829. crossref(new window)

5.
Jorgensen, W. L.; Maxwell, D. S.; Tirado, R. J. J Am Chem. Soc. 1996, 118,11225. crossref(new window)

6.
Maple, J. R.; Hwang, M. J.; Stockfisch, T. P.; Dinur, U.; Waldman, M.; Ewig, C. S.; Hagler, A. T. J. Comput. Chem. 1994, 15, 162. crossref(new window)

7.
Pearlman, D. A.; Kim, S. H. Biopolymers. 1985, 24, 327. crossref(new window)

8.
Rappe, A. K.; Goddard, W. A. III. J. Phys. Chem. 1991, 95, 3358. crossref(new window)

9.
Coppens, P. Annu. Rev. Phys. Chem. 1992, 43, 663. crossref(new window)

10.
Woods, R. J.; Chappelle, R. J. Mol. Struct. (Theochem) 2000, 527, 149. crossref(new window)

11.
Wiberg, K.; Rablen, P. J. Comput. Chem. 1993, 14, 1504. crossref(new window)

12.
Thompson, J. D.; Xidos Sonbuchner, M.; Cramer, C. J.; Truhlar, D. G. Phys. Chem. Commun. 2002, 5, 117.

13.
Williams, D. E.; Yan, J. M. In Advances in Atomic and Molecular Physics; Academic Press: San Diego, 1987; p. 87.

14.
Gussoni, M.; Ramos, M. N.; Castiglioni, C.; Zerbi, G. Chem. Phys. Lett. 1987, 142, 515. crossref(new window)

15.
Lowdin, P. O. Adv. Quantum Chem. 1970, 5, 185; p. 8. crossref(new window)

16.
Reed, A. E.; Weinstock, R. B.; Weingold, F. J. Chem Phy. 1985, 83, 735. crossref(new window)

17.
Fonseca Guerra C.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F. M. J. Comp. Chem. 2004, 25, 189. crossref(new window)

18.
Atkins, P. Physical Chemistry 6th ed.; W. H. Freeman, Ed.; New York, 1998; Chapter 13.

19.
Spartan'04 Windows, Wavefunction, Inc., 18401 Von Karman, Suite370 Irvine, CA 92612.

20.
Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. crossref(new window)

21.
Reed, A.; Weinstock, R.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. crossref(new window)

22.
Hehre, W. J.; Radom, L.; Schleyer, R. P.; Pople, J. A. Ab initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.

23.
Politzer, P.; Mulliken, R. S. J. Chem. Phys. 1971, 55, 5135. crossref(new window)

24.
Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219. crossref(new window)