JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dissipative Particle Dynamics Simulation on the Formation Process of CeO2 Nanoparticles in Alcohol Aqueous Solutions
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dissipative Particle Dynamics Simulation on the Formation Process of CeO2 Nanoparticles in Alcohol Aqueous Solutions
Zhang, Qi; Zhong, Jing; Yang, Bao-Zhu; Huang, Wei-Qiu; Chen, Ruo-Yu; Liao, Jun-Min; Gu, Chi-Ruei; Chen, Cheng-Lung;
  PDF(new window)
 Abstract
Dissipative particle dynamics (DPD) was carried out to study the nucleation and crystal growth process of nanoparticles in different alcohol aqueous solutions. The results showed that the nucleation and crystal growth process of can be classified into three stages: nuclei growth, crystal stabilization and crystal aggregation except the initial induction stage, which could be reproduced by collecting simulation results after different simulation time. Properly selecting the sizes of and water bead was crucial in the simulation system. The influence of alcohol type and content in solutions, and precipitation temperature on the particle dimension were investigated in detail and compared with the experimental results. The consistency between simulation results and experimental data verify that the simulation can reproduce the macroscopic particle aggregation process. The effect of solvent on the nucleation and crystal growth of nanoparticles are different at three stages and can not be simply described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or nucleation thermodynamics theory. Our work demonstrated that DPD methods can be applied to study nanoparticle forming process.
 Keywords
Dissipative particle dynamics; Particle dimension;Alcohol content;Precipitation temperature;
 Language
English
 Cited by
 References
1.
Izu, N.; Shin, W.; Murayama, N.; Kanzaki, S.; Sensors and Actuator B: Chemical 2002, 87, 95. crossref(new window)

2.
Yahiro, H.; Baba, Y.; Eguchi, K.; Arai, H. J. Electrochem. Soc. 1988, 135, 2077. crossref(new window)

3.
Kaspar, J.; Fornasiero, P.; Hickey, N. Catal. Today 2003, 77, 419. crossref(new window)

4.
Yamashita, M.; Kameyama, K.; Yoshida, S.; FUjishiro, Y.; Kawai, T.; Sato, T. J. Mater. Sci. 2002, 37, 683. crossref(new window)

5.
Jiang, M.; Wood, N. D.; Komanduri, R. J. Eng. Mater. Technol. (Trans. ASME) 1998, 120, 304. crossref(new window)

6.
Zhou, X. D.; Huebner, W.; Anderson, H. U. Appl. Phys. Lett. 2002, 80, 3814. crossref(new window)

7.
Chu, X.; Chung, W.; Schmidt, L. D. J. Am. Ceram. Soc. 1993, 76, 2115. crossref(new window)

8.
Hirano, M.; Kato, E. J. Am. Ceram. Soc. 1999, 82, 786.

9.
Hsu, W. P.; Ronnquist, L.; Matijevic, E. Langumir 1988, 4, 31. crossref(new window)

10.
Masui, T.; Fujiwara, K.; Machida, K. I.; Adachi, G. Y.; Sakata, T.; Mori, H. Chem. Mater. 1997, 9, 2197. crossref(new window)

11.
Zhow, Y.; Philips, R. J.; Switzer, J. A. J. Am. Ceram. Soc. 1995, 78, 981. crossref(new window)

12.
Djuricic , B.; Pickering, S. J. Eur. Ceram. Soc. 1999, 19, 1925. crossref(new window)

13.
Zhou, X. D.; Huebner, W.; Anderson, H. U. Chem. Mater. 2003, 15, 378. crossref(new window)

14.
Li, Q.; Han, Z. H.; Shao, M. W.; Liu, X. M.; Qian, Y. T. J. Phys. Chem. Solids 2003, 64, 295. crossref(new window)

15.
Chen, J. Q.; Chen, Z. G.; Li, J. C. J. Mater. Sci. Technol. 2004, 20, 438.

16.
Chen, H. I.; Chang, H. Y. Colloids Surf., A 2004, 242, 61. crossref(new window)

17.
Chen, H. I.; Chang, H. Y. Ceram. Int. 2005, 31, 792.

18.
Li, X. Z.; Chen, Z. G.; Chen, J. Q.; Chen, Y.; Ni, C. Y. J. Rare Earths 2005, 23, 321.

19.
Li, X. Z.; Chen, Y.; Chen, Z. G.; Chen, J. Q. Electronic Components & Materials 2006, 25, 43.

20.
Chen, P. L.; Chen, I. W. J. Am. Ceram. Soc. 1993, 76, 1577. crossref(new window)

21.
Hu, M. Z. C.; Payzant, E. A.; Byers, C. H. J. Colloid Interface Sci. 2002, 222, 20.

22.
Conesa, J. C. Surf. Sci. 1995, 339, 337. crossref(new window)

23.
Gotte, A.; Hermansson, K.; Baudin, M. Surf. Sci. 2004, 552, 273. crossref(new window)

24.
Baudin, M.; Wójcik, M.; Hermansson, K. Surf. Sci. 2000, 468, 51. crossref(new window)

25.
Cao, X. R.; Xu, G. Y.; Li, Y. M.; Zhang, Z. J. Phys. Chem. A 2005, 109, 10418. crossref(new window)

26.
Liu, H.; Qian, H. J.; Zhao, Y.; Lu, Z. Y. J. Chem. Phys. 2007, 127, 144903. crossref(new window)

27.
Soto-Figueroa, C.; Vicente, L.; Martinez-Magadan, J.; Rodriguex-Hidalgo, M. J. Phys. Chem. B 2007, 111, 11756. crossref(new window)

28.
Lisal, M.; Brennan, J. K.; Smith, W. R. J. Chem. Phys. 2006, 125, 164905. crossref(new window)

29.
Hoogerbrugge, P.; Koolman, J. Europhys. Lett. 1992, 19, 155. crossref(new window)

30.
Chen, Y.; Zhong, J.; Huang, W. Q.; Chen, R. Y.; Hu, W. H.; Chen, C.-L. Chem. J. Chinese Universities 2010, 31, 1827.

31.
Juan, S. C. C.; Hua, C. Y.; Chen, C. L.; Sun, X. Q.; Xi, H. T. Mol. Simul. 2005, 31, 277. crossref(new window)

32.
Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423. crossref(new window)

33.
Mullin, J. W. Crystallization; Butterworth-heinemann: Boston, U.S.A., 1993.

34.
Bicerano, J. Prediction of Polymer Properties, 2nd ed.; Marcel Dekker: New York, 1996.

35.
Flory, P. Principles of Polymer Chemistry; Cornell University Press: Ithaca, 1953.

36.
Materials Studio 4.2; Discover/Accelrys: San Diego, CA, 2007.

37.
Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024. crossref(new window)

38.
Frisch, M. J.; Trucks, G. W.; etc. GAUSSIAN 03 revision D.02; Gaussian, Inc.: Wallingford, CT, 2004.

39.
Ryjkitia, E.; Kuhn, H.; Rehage, H.; Muller, F.; Peggau, J. Angew. Chem. Int. Ed. 2002, 41, 983. crossref(new window)

40.
Kuo, M. Y.; Yang, H. C.; Hua, C. Y.; Mao, S. Z.; Deng, F.; Wang, W. W.; Du, Y. R. Chem. Phys. Chem. 2004, 5, 575. crossref(new window)