JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Preparation of Fe3O4/SiO2 Core/Shell Nanoparticles with Ultrathin Silica Layer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Preparation of Fe3O4/SiO2 Core/Shell Nanoparticles with Ultrathin Silica Layer
Jang, Eue-Soon;
  PDF(new window)
 Abstract
We successfully synthesized nanoparticles with ultrathin silica layer of nm that was fine controlled by changing concentration of . Among various reaction conditions for silica coating, increasing concentration of was more effective approach to decrease silica thickness compared to water-to-surfactant ratio control. Moreover, we found that concentration of the 1-octanol is also important factor to produce the homogeneous nanoparticles. The present approach could be available to apply on preparation of other core/shell nanoparticles with ultrathin silica layer.
 Keywords
Reverse microemulsion procedure; nanoparticles;Silica thickness;Water-to-surfactant ratio; concentration;
 Language
English
 Cited by
1.
Critical Enhancement of Photothermal Effect by Integrated Nanocomposites of Gold Nanorods and Iron Oxide on Graphene Oxide,;;;;;;;

Bulletin of the Korean Chemical Society, 2013. vol.34. 9, pp.2795-2799 crossref(new window)
1.
Synthesis methods to prepare single- and multi-core iron oxide nanoparticles for biomedical applications, Dalton Trans., 2015, 44, 7, 2943  crossref(new windwow)
2.
Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@SiO2 controlled the shell thickness, Journal of Nanoparticle Research, 2017, 19, 4  crossref(new windwow)
3.
A facile bi-phase synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable film thicknesses, RSC Advances, 2014, 4, 19, 9693  crossref(new windwow)
4.
Silica-based nanocomposites via reverse microemulsions: classifications, preparations, and applications, Nanoscale, 2014, 6, 9, 4418  crossref(new windwow)
5.
Critical Enhancement of Photothermal Effect by Integrated Nanocomposites of Gold Nanorods and Iron Oxide on Graphene Oxide, Bulletin of the Korean Chemical Society, 2013, 34, 9, 2795  crossref(new windwow)
6.
Magnetic mesoporous silica for water remediation: Synthesis, characterization and application as adsorbent of molecules and ions of environmental concern, Microporous and Mesoporous Materials, 2016, 230, 1  crossref(new windwow)
7.
A Comparative Investigation on the Structural, Optical and Electrical Properties of SiO2–Fe3O4 Core–Shell Nanostructures with Their Single Components, Acta Metallurgica Sinica (English Letters), 2015, 28, 11, 1317  crossref(new windwow)
 References
1.
Cho, Y.-S.; Yoon, T.-J.; Jang, E.-S.; Hong, K. S.; Lee, S. Y.; Kim, O. R.; Park, C.; Kim, Y.-J.; Yi, G.-C.; Chang, K. Cancer Lett. 2010, 299, 63. crossref(new window)

2.
Green, J. J.; Zhou, B. Y.; Mitalipova, M. M.; Beard, C.; Langer, R.; Jaenisch, R.; Anderson, D. G. Nano Lett. 2008, 8, 3126. crossref(new window)

3.
Lee, J.-H.; Jang, J.-T.; Choi, J.-S.; Moon, S. H.; Noh, S.- H.; Kim, J.-W.; Kim, J.-G.; Kim, I.-S.; Park, K. I.; Cheon, J. Nature Nanotech. 2011, 6, 418. crossref(new window)

4.
Jolivet, J. P.; Chaneac, C.; Tronc, E. Chem. Commun. 2004, 5, 481.

5.
Xu, J.; Yang, H.; Fu, W.; Du, K.; Sui, Y.; Chen, J.; Zeng, Y.; Li, M.; Zou, G.; J. Magn. Magn. Mater. 2007, 309, 307. crossref(new window)

6.
Cai, W.; Wan, J. J. Colloid Interface Sci. 2007, 305, 366. crossref(new window)

7.
Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. J. Am. Chem. Soc. 2004, 126, 273. crossref(new window)

8.
Bao, N.; Shen, L.; Wang, Y.; Padhan, P.; Gupta, A. J. Am. Chem. Soc. 2007, 129, 12374. crossref(new window)

9.
Park, J.; Joo, J.; Kwon, S.; Jang, Y.; Hyeon, T. Angew. Chem. Int. Ed. 2007, 46, 4630. crossref(new window)

10.
Jun, B.-H.; Noh, M. S.; Kim, J.; Kim, G.; Kang, H.; Kim, M.-S.; Seo, Y.-T.; Baek, J.; Kim, J.-H.; Park, J.; Kim, S.; Kim, Y.-K.; Hyeon, T.; Cho, M.-H.; Jeong, D. H.; Lee, Y.-S. Small 2010, 6, 119. crossref(new window)

11.
Lee, J.-H.; Jun, Y.-W.; Yeon, S.-I.; Shin, J.-S.; Cheon, J.; Angew. Chem. Int. Ed. 2006, 45, 8160. crossref(new window)

12.
Zhang, Y.; Pan, S.; Teng, X.; Luo, Y.; Li, G.; J. Phys. Chem. C 2008, 112, 9623.

13.
Louie, A. Chem. Rev. 2010, 110, 3146. crossref(new window)

14.
Stober, W.; Fink, A.; Bohn, E. J. Colloid Int. Sci. 1968, 26, 62. crossref(new window)

15.
Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Marzan, L. M. L. J. Colloid Int. Sci. 2005, 283, 392. crossref(new window)

16.
Rossi, L. M.; Shi, L.; Quina, F. H.; Rosenzweig, Z. Langmuir 2005, 21, 4277. crossref(new window)

17.
Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Nature Biotech. 2007, 25, 1165. crossref(new window)

18.
Huang, J.; Bu, L.; Xie, J.; Chen, K.; Cheng, Z.; Chen, X. ACS Nano 2010, 4, 7151. crossref(new window)

19.
Cha, E. J.; Jang, E.-S.; Sun, I. C.; Lee, I. J.; Ko, J. H.; Kim, Y. I. J. Controlled Release 2011, 155, 152. crossref(new window)

20.
Han, Y.; Jang, J.; Lee, S. S.; Ying, J. Y. Langmuir 2008, 24, 5842. crossref(new window)

21.
Yi, D. K.; Lee, S. S.; Papaefthymiou, G. C.; Ying, J. Y. Chem. Mater. 2006, 18, 614. crossref(new window)

22.
Kool, R.; Schooneveld, N. M.; Hilhort, J.; Donegá, C. M.; Hart, D. C.; Balaaderen, A.; Vanmaekelbergh, D.; Meijerink, A. Chem. Mater. 2008, 20, 2503. crossref(new window)

23.
Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Angew. Chem. Int. Ed. 2008, 47, 8438. crossref(new window)

24.
O.-Asare, K.; Arriagada, F. J. Colloids & Surf. 1990, 50, 321. crossref(new window)

25.
Arriagada, F. J.; O.-Asare, K. J. Colloid Int. Sci. 1999, 211, 210. crossref(new window)

26.
Chang, C.-L.; Fogler, H. S. Langmuir 1997, 13, 3295. crossref(new window)

27.
Li, T.; Moon, J.; Morrone, A. A.; Mecholsky, J. J.; Talham, D. R.; Adair, H. Langmuir 1999, 15, 4328. crossref(new window)

28.
Bagwe, R. P.; Hilliard, L. R.; Tan, W. Langmuir 2006, 22, 4357. crossref(new window)

29.
Dove, P. M.; Craven, C. M.; Geochim. et Cosmochim. Acta 2005, 69, 4963. crossref(new window)