Advanced SearchSearch Tips
Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation
Kwak, Jun-Young; Lee, Choong-Sub; Kim, Don; Kim, Yeong-Il;
  PDF(new window)
Ba-ferrite () nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above , whereas what was prepared at showed the crystallinity when it was calcined at the temperature higher than about . The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at and calcined at . When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures.
Ba-Ferrite;Magnetic materials;Precipitation;Mossbauer spectroscopy;Magnetic properties;
 Cited by
Controlled synthesis and photocatalytic activities of barium hexaferrite nanoparticles and examine decolorization methyl orange on liver of rats, Journal of Materials Science: Materials in Electronics, 2017, 28, 6, 4537  crossref(new windwow)
Synthesis of Co-Zr doped nanocrystalline strontium hexaferrites by sol-gel auto-combustion route using sucrose as fuel and study of their structural, magnetic and electrical properties, Ceramics International, 2016, 42, 13, 14475  crossref(new windwow)
In Situ Synthesis and Characterization of CuFe10Al2O19/MWCNT Nanocomposites for Supercapacitor and Microwave-Absorbing Applications, Industrial & Engineering Chemistry Research, 2013, 52, 28, 9594  crossref(new windwow)
Effect of Cu-Co-Zr Doping on the Properties of Strontium Hexaferrites Synthesized by Sol-Gel Auto-combustion Method, Journal of Superconductivity and Novel Magnetism, 2017, 30, 3, 635  crossref(new windwow)
A low-cost and eco-friendly viable approach for green synthesis of barium haxaferrite nanostructures using palm oil, Ceramics International, 2014, 40, 10, 15685  crossref(new windwow)
Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties, Applied Physics A, 2016, 122, 8  crossref(new windwow)
Went, J. J.; Gorter, E. W.; van Oosterhout, G. W. Philps Tech. Rev. 1951/1952, 13, 194.

Sharrock, M.; Carson, L. W. IEEE Trans. Magn. 1995, 31, 2871. crossref(new window)

Haneda, K.; Miyakama, C.; Kojima, H. J. Am. Ceram. Soc. 1974, 57, 354. crossref(new window)

Roos, W. J. Am. Ceram. Soc. 1980, 32, 1027.

Jacobo, S. E.; Civale, L.; Blesa, M. A.; J. Magn. Magn. Mater. 2003, 260, 37. crossref(new window)

Hsiang, H.; Yao, R.-Q. Mater. Chem. Phys. 2007, 104, 1. crossref(new window)

Janasi, S. R.; Emura, M.; Landgraf, F. J. G.; Rodrigues, D. J. Magn. Magn. Mater. 2002, 238, 168. crossref(new window)

Shirk, B. T.; Buessen, W. R. J. Am. Ceram. Soc. 1970, 53, 192. crossref(new window)

Lee, C.-K.; Speyer, R. F. J. Mater. Sci. 1994, 29, 1348. crossref(new window)

Rezlescu, L.; Rezlescu, E.; Popa, P. D.; Rezlescu, N.; J. Magn. Magn. Mater. 1999, 193, 288. crossref(new window)

Sürig, C.; Hempel, K. A.; Bonnenberg, D. Appl. Phys. Lett. 1993, 63, 2836. crossref(new window)

Zhong, W.; Ding, W.; Zhang, N.; Hong, J.; Yan, Q.; Du, Y. J. Magn. Magn. Mater. 1997, 168, 196. crossref(new window)

Xiong, G.; Wei, G. B.; Yang, X. J.; Lu, L. D.; Wang, X. J. Mater. Sci. 2000, 35, 931. crossref(new window)

Liu, X.; Wang, J.; Gan, L.-M.; Ng, S.-C.; Ding, J. J. Magn. Magn. Mater. 1998, 184, 344 crossref(new window)

Sankaranarayanan, V. K.; Pankhurst, Q. A.; Dickson, D. P. E.; Johnson, C. E. J. Magn. Magn. Mater. 1993, 120, 73. crossref(new window)

Sankaranarayanan, V. K.; Khan, D. C. J. Magn. Magn. Mater. 1996, 153, 337. crossref(new window)

Kumazawa, H.; Cho, H.-M.; Sada, E. J. Mater. Sci. 1993, 28, 5247. crossref(new window)

Liu, X.; Wang, J.; Gan, L.-M.; Ng, S.-C. J. Magn. Magn. Mater. 1999, 195, 452. crossref(new window)

Mishra, D.; Anand, S.; Panda, R. K.; Das, R. P. Mater. Chem. Phys. 2004, 86, 132. crossref(new window)

Fang, H. C.; Yang, Z.; Ong, C. K.; Li, Y.; Wang, C. S. J. Magn. Magn. Mater. 1998, 187, 129. crossref(new window)

Kim, Y. I.; Kim, D.; Lee, C. S. Physica B 2003, 337, 42. crossref(new window)

Cornell, R. M.; Schwertmann, U. The Iron Oxides; VCH: New York, 1996; p. 314.

Shin, H. S.; Kwon, S.-J. Proc. of 6th International Conference on Ferrite; 1992, 1402.

JCPDS File No. 84-0757 and 78-0133.

Adelsköld, V. Arkiv Kemi. Mineral. Geol. 1938, 12A, 1.