JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation
Kwak, Jun-Young; Lee, Choong-Sub; Kim, Don; Kim, Yeong-Il;
  PDF(new window)
 Abstract
Ba-ferrite () nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above , whereas what was prepared at showed the crystallinity when it was calcined at the temperature higher than about . The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at and calcined at . When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures.
 Keywords
Ba-Ferrite;Magnetic materials;Precipitation;Mossbauer spectroscopy;Magnetic properties;
 Language
English
 Cited by
1.
Controlled synthesis and photocatalytic activities of barium hexaferrite nanoparticles and examine decolorization methyl orange on liver of rats, Journal of Materials Science: Materials in Electronics, 2017, 28, 6, 4537  crossref(new windwow)
2.
Synthesis of Co-Zr doped nanocrystalline strontium hexaferrites by sol-gel auto-combustion route using sucrose as fuel and study of their structural, magnetic and electrical properties, Ceramics International, 2016, 42, 13, 14475  crossref(new windwow)
3.
In Situ Synthesis and Characterization of CuFe10Al2O19/MWCNT Nanocomposites for Supercapacitor and Microwave-Absorbing Applications, Industrial & Engineering Chemistry Research, 2013, 52, 28, 9594  crossref(new windwow)
4.
Effect of Cu-Co-Zr Doping on the Properties of Strontium Hexaferrites Synthesized by Sol-Gel Auto-combustion Method, Journal of Superconductivity and Novel Magnetism, 2017, 30, 3, 635  crossref(new windwow)
5.
A low-cost and eco-friendly viable approach for green synthesis of barium haxaferrite nanostructures using palm oil, Ceramics International, 2014, 40, 10, 15685  crossref(new windwow)
6.
Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties, Applied Physics A, 2016, 122, 8  crossref(new windwow)
 References
1.
Went, J. J.; Gorter, E. W.; van Oosterhout, G. W. Philps Tech. Rev. 1951/1952, 13, 194.

2.
Sharrock, M.; Carson, L. W. IEEE Trans. Magn. 1995, 31, 2871. crossref(new window)

3.
Haneda, K.; Miyakama, C.; Kojima, H. J. Am. Ceram. Soc. 1974, 57, 354. crossref(new window)

4.
Roos, W. J. Am. Ceram. Soc. 1980, 32, 1027.

5.
Jacobo, S. E.; Civale, L.; Blesa, M. A.; J. Magn. Magn. Mater. 2003, 260, 37. crossref(new window)

6.
Hsiang, H.; Yao, R.-Q. Mater. Chem. Phys. 2007, 104, 1. crossref(new window)

7.
Janasi, S. R.; Emura, M.; Landgraf, F. J. G.; Rodrigues, D. J. Magn. Magn. Mater. 2002, 238, 168. crossref(new window)

8.
Shirk, B. T.; Buessen, W. R. J. Am. Ceram. Soc. 1970, 53, 192. crossref(new window)

9.
Lee, C.-K.; Speyer, R. F. J. Mater. Sci. 1994, 29, 1348. crossref(new window)

10.
Rezlescu, L.; Rezlescu, E.; Popa, P. D.; Rezlescu, N.; J. Magn. Magn. Mater. 1999, 193, 288. crossref(new window)

11.
Sürig, C.; Hempel, K. A.; Bonnenberg, D. Appl. Phys. Lett. 1993, 63, 2836. crossref(new window)

12.
Zhong, W.; Ding, W.; Zhang, N.; Hong, J.; Yan, Q.; Du, Y. J. Magn. Magn. Mater. 1997, 168, 196. crossref(new window)

13.
Xiong, G.; Wei, G. B.; Yang, X. J.; Lu, L. D.; Wang, X. J. Mater. Sci. 2000, 35, 931. crossref(new window)

14.
Liu, X.; Wang, J.; Gan, L.-M.; Ng, S.-C.; Ding, J. J. Magn. Magn. Mater. 1998, 184, 344 crossref(new window)

15.
Sankaranarayanan, V. K.; Pankhurst, Q. A.; Dickson, D. P. E.; Johnson, C. E. J. Magn. Magn. Mater. 1993, 120, 73. crossref(new window)

16.
Sankaranarayanan, V. K.; Khan, D. C. J. Magn. Magn. Mater. 1996, 153, 337. crossref(new window)

17.
Kumazawa, H.; Cho, H.-M.; Sada, E. J. Mater. Sci. 1993, 28, 5247. crossref(new window)

18.
Liu, X.; Wang, J.; Gan, L.-M.; Ng, S.-C. J. Magn. Magn. Mater. 1999, 195, 452. crossref(new window)

19.
Mishra, D.; Anand, S.; Panda, R. K.; Das, R. P. Mater. Chem. Phys. 2004, 86, 132. crossref(new window)

20.
Fang, H. C.; Yang, Z.; Ong, C. K.; Li, Y.; Wang, C. S. J. Magn. Magn. Mater. 1998, 187, 129. crossref(new window)

21.
Kim, Y. I.; Kim, D.; Lee, C. S. Physica B 2003, 337, 42. crossref(new window)

22.
Cornell, R. M.; Schwertmann, U. The Iron Oxides; VCH: New York, 1996; p. 314.

23.
Shin, H. S.; Kwon, S.-J. Proc. of 6th International Conference on Ferrite; 1992, 1402.

24.
JCPDS File No. 84-0757 and 78-0133.

25.
Adelsköld, V. Arkiv Kemi. Mineral. Geol. 1938, 12A, 1.