JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Radial Distribution Functions of the Scaled OSS2 Water
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Radial Distribution Functions of the Scaled OSS2 Water
Lee, Song Hi;
  PDF(new window)
 Abstract
Classical molecular dynamics (MD) simulations using a scaled OSS2 potential originally derived from ab initio calculations are used to study the radial distribution functions of water. The original OSS2 water potential is shown to represent a glassy or an ice at ambient temperature, but the diffusion coefficient increases on increasing the temperature of the system or decreasing the density. This suggests scaling the OSS2 potential. The O-O, O-H, and H-H radial distribution functions and the corresponding coordination numbers for the scaled OSS2 potential, obtained by MD simulation, are in good agreement with the experiment results and calculations for the SPC/E water potential over a range of temperatures.
 Keywords
Molecular dynamics simulation;Scaled OSS2 potential;Radial distribution function;
 Language
English
 Cited by
 References
1.
Lemberg, H. L.; Stillinger, F. H. J. Chem. Phys. 1975, 62, 1677. crossref(new window)

2.
Stillinger, F. H.; David, C. W. J. Chem. Phys. 1978, 69, 1473 crossref(new window)

3.
Stillinger, F. H.; David, C. W. J. Chem. Phys. 1980, 73, 3384. crossref(new window)

4.
Stillinger, F. H.; Weber, T. A. Chem. Phys. Lett. 1981, 79, 259. crossref(new window)

5.
Stillinger, F. H.; Weber, T. A. J. Chem. Phys. 1982, 76, 4028. crossref(new window)

6.
Weber, T. A.; Stillinger, F. H. J. Phys. Chem. 1982, 86, 1314

7.
Weber, T. A.; Stillinger, F. H. J. Phys. Chem. J. Chem. Phys. 1982, 77, 4150.

8.
Ojamäe, L.; Shavitt, I.; Singer, S. J. J. Chem. Phys. 1998, 109, 5547. crossref(new window)

9.
Lee, S. H. Bull. Korean Chem. Soc. 2001, 22, 847.

10.
Lee, S. H. Bull. Korean Chem. Soc. 2002, 23, 107. crossref(new window)

11.
Lee, S. H. Bull. Korean Chem. Soc. 2006, 27, 1154. crossref(new window)

12.
Lee, S. H. Bull. Korean Chem. Soc. 2009, 30, 499. crossref(new window)

13.
Lee, S. H. Bull. Korean Chem. Soc. 2009, 30, 700. crossref(new window)

14.
Lee, S. H.; Rasaiah, J. C. Mol. Sim. 2010, 36, 69. crossref(new window)

15.
Ojamae, L. Linkoping University, Linkoping, Sweden. Private Communication, 2008.

16.
Agmon, N. Hebrew University, Jerusalem, Israel. Private Communication, 2008

17.
Soper, A. K. Chem. Phys. 2000, 258, 121. crossref(new window)

18.
Gauss, K. F. J. Reine Angew. Math. 1829, IV, 232.

19.
Hoover, W. G.; Ladd, A. J. C.; Moran, B. Phys. Rec. Lett. 1982, 48, 1818. crossref(new window)

20.
Evans, D. J. J. Chem. Phys. 1983, 78, 3297. crossref(new window)

21.
Evans, D. J.; Hoover, W. G.; Failor, B. H.; Moran, B.; Ladd, A. J. C. Phys. Rev. A: At. Mol. Opt. Phys. 1983, 28, 1016. crossref(new window)

22.
Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford Univ. Press: Oxford, 1987; p 81.

23.
Atkins, P.; Paula J. d. Physical Chemistry, 7th ed.; Freeman: New York, 2002; p 1104.

24.
Holz, M.; Heil, S. R.; Sacco, A. Phys. Chem. Chem. Phys. 2000, 2, 4740. crossref(new window)

25.
Easteal, A. J.; Price, W. E.; Woolf, L. A. J. Chem. Soc., Faraday Tans. 1, 1989, 85, 1091. crossref(new window)

26.
Lee, S. H.; Rasaiah, J. C. J. Chem. Phys. 2011, 135, 124505. crossref(new window)

27.
Lee, S. H. Bull. Korean Chem. Soc. 2009, 30, 2158. crossref(new window)

28.
Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269. crossref(new window)