JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Atmospheric Effects on Corrosion of Iron in Borate Buffer Solution
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Atmospheric Effects on Corrosion of Iron in Borate Buffer Solution
Kim, Hyun-Chul; Kim, Younkyoo;
  PDF(new window)
 Abstract
Using potentiodynamic and linear polarization method, the atmospheric effect on the corrosion of iron in borate buffer solution was investigated. The corrosion of iron was heavily influenced by the degree of oxygen concentration. The supply of reduction current was increased by the reduction of dissolved oxygen, and the corrosion potential of iron was shifted to the positive side. The ion, which was produced through the reduction of either water or oxygen, significantly increased the ion concentration inside of the electrical double layers of iron electrode, and facilitated the adsorption of ion on the surface of the iron electrode. The adsorption of ion on the iron electrode can be explained either by Langmuir isotherm or by Temkin logarithmic isotherm.
 Keywords
Iron;Oxide film;Adsorption;Langmuir;Temkin;
 Language
Korean
 Cited by
 References
1.
Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; J. A. Franklin, Ed. (Engl. Transl.); Nat. Assoc. Corr. Eng.: Houston, 1974; pp 307-321.

2.
Heusler, K. E. Iron. In Encyclopedia of Electrochemistry of the Elements; A. J. Bard, Ed.; Marcel Dekker: New York, 1982; Vol. IX, Part A, pp 311-356.

3.
Drazic, D. M. Iron and its Electrochemistry in an active state. In Modern Aspect of Electrochemistry; B. E. Conway; J.O'M. Bockris; R. E. White, Eds.; Plenum Press: New York, 1989; Vol. 19, p 69.

4.
Bockris, J. O'M.; Khan, S. U. M. Surface Electrochemistry, A Molecular Level Approach; Plenum Press: New York, 1993; pp 756-771 and 780-791.

5.
Bockris, J. O'M.; Reddy, A. K. N. Modern Electrochemistry 2B; Kluwer Academic/Plenum Publishers: New York, 2000; pp 1666-1680.

6.
Toney, M.; Davenport, A. J.; Oblonsky, L. J.; Ryan, M. P.; Vitus, C. M. Phys. Rev. Lett. 1997, 79(21), 4282. crossref(new window)

7.
Kurosaki, M.; Seo, M. Corros. Sci. 2003, 45, 2597. crossref(new window)

8.
Allongue, P.; Joiret, S. Phys. Rev. B 2005, 71, 115407-1. crossref(new window)

9.
Deng, H.; Nanjo, H.; Qian, P.; Santosa, A.; Ishikawa, I.; Kurata, Y. Electrochim. Acta 2007, 52, 4272. crossref(new window)

10.
Chien, J.; Huang, K.; Liu, S. Corros. Sci. 2008, 50, 1982. crossref(new window)

11.
Flis, J.; Flis-Kabulska, I.; Zakroczymski, T. Electrochim. Acta 2009, 54, 1810. crossref(new window)

12.
Harrington, S. P.; Wang, F.; Devine, T. M. Electrochim. Acta 2010, 55, 4092. crossref(new window)

13.
Krishnamurthy, B.; Gorsostiza, P. Electrochem. Commun. 2006, 8, 1810.

14.
Raja, K. S.; Jones, D. A. Corros. Sci. 2006, 48, 1623. crossref(new window)

15.
Lee, J.-B.; Kim, S.-W. Mater. Chem. Phys. 2007, 104, 98. crossref(new window)

16.
Wielant, T.; Goosens, V.; Hausbrand, R.; Terryn, H. Electrochim. Acta 2007, 52, 7617. crossref(new window)

17.
Kim, H.; Kim, Y. J. Korean Chem. Soc. 2012, 56(5), in press.

18.
Chung, S.; Kim, Y. J. Korean Chem. Soc. 2011, 55, 575. crossref(new window)

19.
Bockris, J. O'M.; Khan, S. U. M. Surface Electrochemistry, A Molecular Level Approach; Plenum Press: New York, 1993; pp 266 and 334-335.