JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A New Topology of Solutions of Chemical Equations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A New Topology of Solutions of Chemical Equations
Risteski, Ice B.;
  PDF(new window)
 Abstract
In this work is induced a new topology of solutions of chemical equations by virtue of point-set topology in an abstract stoichiometrical space. Subgenerators of this topology are the coefficients of chemical reaction. Complex chemical reactions, as those of direct reduction of hematite with a carbon, often exhibit distinct properties which can be interpreted as higher level mathematical structures. Here we used a mathematical model that exploits the stoichiometric structure, which can be seen as a topology too, to derive an algebraic picture of chemical equations. This abstract expression suggests exploring the chemical meaning of topological concept. Topological models at different levels of realism can be used to generate a large number of reaction modifications, with a particular aim to determine their general properties. The more abstract the theory is, the stronger the cognitive power is.
 Keywords
Topology;Subgenerators;Basis;Dimension;Equations;
 Language
English
 Cited by
 References
1.
Munkres, J. R. Topology, 2nd ed.; Prentice-Hall Inc.: Englewood Cliffs, 2000.

2.
Spanier, E. H. Algebraic Topology; Springer Verlag: New York 1981.

3.
Risteski, I. B. New Discovered Paradoxes in Theory of Balancing Chemical Equations. Mat. & Technol. 2011, 45, 503.

4.
Risteski, I. B. A New Approach to Balancing Chemical Equations. SIAM Problems & Solutions 2007, 1−10.

5.
Risteski, I. B. A New Pseudoinverse Matrix Method for Balancing Chemical Equations and Their Stability. J. Korean Chem. Soc. 2008, 52, 223. crossref(new window)

6.
Bottomley, J. Note on a Method for Determining the Coefficients in Chemical Equations. Chem. News J. Phys. Sci. 1878, 37, 110.

7.
Barker, G. F. A Textbook of Elementary Chemistry, Theoretical and Inorganic; John P. Morton & Co.: Louisville, 1891; p 70.

8.
Endslow, A. W. S. Balancing Chemical Equations, J. Chem. Educ. 1931, 8, 2453. crossref(new window)

9.
Jones, M. Problem 71-25*: Balancing Chemical Equations. SIAM Rev. 1971, 13, 571.

10.
Crocker, C. Application of Diophantine Equations to Problems in Chemistry. J. Chem. Educ. 1968, 45, 731. crossref(new window)

11.
Krishnamurthy, E. V. Generalized Matrix Inverse for Automatic Balancing of Chemical Equations. Int. J. Math. Educ. Sci. Technol. 1978, 9, 323. crossref(new window)

12.
Das, S. C. A Mathematical Method of Balancing a Chemical Equation. Int. J. Math. Educ. Sci. Technol. 1986, 17, 191. crossref(new window)

13.
Yde, P. B. Abolish the Half Reaction Method. Int. J. Math. Educ. Sci. Technol. 1989, 20, 533. crossref(new window)

14.
Yde, P. B. Defer the Oxidation Number Method. Int. J. Math. Educ. Sci. Technol. 1990, 21, 27. crossref(new window)

15.
Johnson, O. C. Negative Bonds and Rule for Balancing Equations. Chem. News J. Phys. Sci. 1880, 42, 51.

16.
Subramaniam, R.; Goh, K. G.; Chia, L. S. A Chemical Equation as a Representation of a Class of Linear Diophantine Equations and a System of Homogeneous Linear Equations. Int. J. Math. Educ. Sci. Technol. 1996, 27, 323. crossref(new window)

17.
Risteski, I. B. A New Nonsingular Matrix Method for Balancing Chemical Equations and Their Stability. Int. J. Math. Manuscripts 2007, 1, 180.

18.
Moore, E. H. On the Reciprocal of the General Algebraic Matrix. Bull. Amer. Math. Soc. 1920, 26, 394.

19.
Penrose, R. A Generalized Inverse for Matrices. Proc. Cambridge Phil. Soc. 1955, 51, 406. crossref(new window)

20.
Risteski, I. B. A New Generalized Matrix Inverse Method for Balancing Chemical Equations and Their Stability. Bol. Soc. Quim. Mex. 2008, 2, 104.

21.
Von Neumann, J. Uber Adjungierte Funktionaloperatoren. Ann. of Math. 1932, 33, 294. crossref(new window)

22.
Von Neumann, J. Continuous Geometry; Princeton Univ. Press: Princeton, 1960.

23.
Murray, F. J.; Von Neumann, J. On Rings of Operators. Ann. of Math. 1936, 37, 116. crossref(new window)

24.
Risteski, I. B. A New Singular Matrix Method for Balancing Chemical Equations and Their Stability. J. Chin. Chem. Soc. 2009, 56, 65.

25.
Drazin, M. P. Pseudo-inverses in Associative Rings and Semigroups. Amer. Math. Monthly 1958, 65, 506. crossref(new window)

26.
Risteski, I. B. A New Complex Vector Method for Balancing Chemical Equations. Mat. & Technol. 2010, 44, 193.

27.
Bell, E. T. Exponential Polynomials. Ann. of Math. 1934, 35, 258. crossref(new window)

28.
Godel, K. What is Cantor's Continuum Problem? Amer. Math. Monthly 1947, 54, 515. crossref(new window)

29.
Trajkov, S. Teorija na metalurškite procesi; Univ. Kiril & Metodij: Skopje, 1970.

30.
Haralampiev, G. A. Teorija na metalurgichnite procesi; Tehnika: Sofia, 1987.

31.
Risteski, I. B. The New Algebraic Criterions to Even out the Chemical Reactions. In 22nd October Meeting of Miners & Metallurgists, Bor, Oct 1−2, 1990; pp 313−318.

32.
Beckenbach, E.; Bellman, R. An Introduction to Inequalities; The Math. Assoc. America: Washington D. C., 1961.