JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Determination of Surface Energy by Means of Home-Made Goniometer and Image Analyzing Software for Contact Angle Measurement
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Determination of Surface Energy by Means of Home-Made Goniometer and Image Analyzing Software for Contact Angle Measurement
Cho, Seo-Rin; Cho, Han-Gook;
  PDF(new window)
 Abstract
We report a contact angle goniometer that can be easily assembled and used in high school and general chemistry experiments. It consists of an LED flash, a sample stand, and a camera fixed on an optical bread board, and the sample area is covered to block light from outside with a box with holes on both sides. ImageJ, free image analyzing software and a JAVA plugin (Drop_analysis) were used to determine the contact angle of liquid drop resting on solid surface. The contact angles of various liquids were successfully measured on various surfaces. The solid surface energies have also been determined using the Owen-Wendt method from the contact angles of and . The results reasonably agree with the previously reported values, showing the surface characteristics and modification as well as the dispersive and polar contributions. These contact angle goniometer and method for determination of the contact angle and surface energy can be applied to observation of various surface properties including wettability, hydrophilicity, and water repelling. Students can learn how the surface properties are related to the intermolecular interactions and gain experience about the equilibrium between the related forces, optics, and mathematical derivations.
 Keywords
Contact angle;Surface energy;Image analysis;Goniometer;Water repellability;
 Language
Korean
 Cited by
1.
초음파 무화효과를 이용한 현탁액으로부터 나노입자의 분리포집법 제안,김지향;김정순;염지영;하강렬;김무준;

한국음향학회지, 2016. vol.35. 6, pp.445-451 crossref(new window)
2.
Characterization of Black Carbon Collected from Candle Light and Automobile Exhaust Pipe,;;

대한화학회지, 2013. vol.57. 6, pp.691-696 crossref(new window)
3.
Superhydrophilic-underwater superoleophobic TiO2-coated mesh for separation of oil from oily seawater/wastewater,;;

The Korean Journal of Chemical Engineering, 2016. vol.33. 11, pp.3203-3206 crossref(new window)
4.
Purification of oily seawater/wastewater using superhydrophobic nano-silica coated mesh and sponge,;;

Journal of Industrial and Engineering Chemistry, 2016. vol.40. pp.47-53 crossref(new window)
1.
Purification of oily seawater/wastewater using superhydrophobic nano-silica coated mesh and sponge, Journal of Industrial and Engineering Chemistry, 2016, 40, 47  crossref(new windwow)
2.
Superhydrophilic–underwater superoleophobic TiO2-coated mesh for separation of oil from oily seawater/wastewater, Korean Journal of Chemical Engineering, 2016, 33, 11, 3203  crossref(new windwow)
3.
Characterization of Black Carbon Collected from Candle Light and Automobile Exhaust Pipe, Journal of the Korean Chemical Society, 2013, 57, 6, 691  crossref(new windwow)
4.
Suggestion of separation and recollection method of nano particles from suspension by using ultrasonic atomization, The Journal of the Acoustical Society of Korea, 2016, 35, 6, 445  crossref(new windwow)
 References
1.
Lugscheider, E.; Bobzin, K. Surf. Coat. Technol. 2001, 142-144, 755. crossref(new window)

2.
Dalet, P.; Papon, E.; Villenave, J.-J. J. Adhes. Sci. Technol. 1999, 13, 857. crossref(new window)

3.
Gesser, H. D.; Krause, P. J. Chem. Edu. 2000, 77, 58-59. crossref(new window)

4.
Bayer, I. S. Measurement and Interpretation of Contact Angles in Surface Energetics and Droplet Impact; University of Illinois at Chicago: Chicago, 2006.

5.
Nguyen, T.; Johns, W. E. Wood Sci. Technol. 1978, 12, 63-74. crossref(new window)

6.
Wenzel, R. N. J. Phys. Chem. 1949, 53, 1466-1467. crossref(new window)

7.
Bikerman, J. J. J. Phys. Chem. 1950, 54, 653-658. crossref(new window)

8.
Petrie, E. M. Theories of Adhesion. In Handbook of Adhesive and Sealants, 2nd ed.; McGraw-Hill: New York, 2006.

9.
Fox, H. W.; Zisman, W. A. J. Colloid Sci. 1950, 5, 514-531. crossref(new window)

10.
Kinlock, A. J. Adhesion and Adhesives; Chapman and Hall: New York, 1987; p 5.

11.
Tsujii, K.; Yamamoto, T.; Onda, T.; Shibuichi, S. Angew. Chem. Int. Ed. Engl. 1997, 36, 1011-1012. crossref(new window)

12.
Lim, H. S. KIC News 2012, 15, 11-22.

13.
Young, T. Philos. Trans. R. Soc. London 1805, 95, 65. crossref(new window)

14.
Zielecka M. Polimery 2004, 49, 327.

15.
Tadmor, R. Langmuir 2004, 20, 7659-7664. crossref(new window)

16.
Fox, H. W.; Zisman, W. A. J. Colloid Sci. 1950, 5, 514-531. crossref(new window)

17.
Zisman, W. A. ACS Adv. Chem. Ser. 1964, 43, 1-51.

18.
Kabza, K.; Gestwicki, J. E.; McGrath, J. L. J. Chem. Edu. 2000, 77, 63-65. crossref(new window)

19.
Lafuma, A.; Quere, D. Nature Materials 2003, 2, 457-460. crossref(new window)

20.
Lotus effect. http://en.wikipedia.org/wiki/Lotus_effect.

21.
Lamour, G.; Hamraoui, A.; Buvailo, A.; Xing, Y.; Keuleyan, S.; Prakash, V.; Bftekhari-Bafrooei, A.; Borguet, E. J. Chem. Edu. 2010, 87, 1403-1407. crossref(new window)

22.
Collins, T. J. BioTechniques 2007, 43, S25-S30. crossref(new window)

23.
Barboriak, D; Padua, A; York, G.; Macfall, J. J. Digit. Imaging 2005, 18, 91-99. crossref(new window)

24.
Stalder, A. F.; Melchior, T.; Mller, M.; Sage, D.; Blu, T.; Unser, M. Colloids Surf., 2010, 364, 72-81. crossref(new window)

25.
Stalder, A. F.; Kulik, G.; Sage, D.; Barbieri, L.; Hoffmann, P. Colloids Surf., 2006, 286, 92-103. crossref(new window)

26.
Drop Shape Analysis. Drop_analysis plugin, consult its website. http://bigwww.epfl.ch/demo/dropanalysis/.

27.
Jasper, J. J. J. Phys. Chem. Ref. Data 1972, 1, 841-1009. crossref(new window)

28.
Rudawska, A.; Jacniacka, E. Int. J. Adhes. Adhes. 2009, 29, 451-457. crossref(new window)

29.
Chan, C. J.; Slaita, K. J. Chem. Edu. 2012, 89, 1547-1550.