Advanced SearchSearch Tips
Preparation of Highly Visible-Light Photocatalytic Active N-Doped TiO2 Microcuboids
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Preparation of Highly Visible-Light Photocatalytic Active N-Doped TiO2 Microcuboids
Zhao, Kang; Wu, Zhiming; Tang, Rong; Jiang, Yadong;
  PDF(new window)
N-doped microcuboids were successfully prepared by a simple one-pot hydrothermal method. The samples were characterized by X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. It was found that the N-doped microcuboids enhanced absorption in the visible light region, and exhibited higher activity for photocatalytic degradation of model dyes. Based on the experimental results, a visible light induced photocatalytic mechanism was proposed for N-doped anatase microcuboids.
Nitrogen-doping; microcuboid;Visible photocatalyst;Mechanism;
 Cited by
Photo-active float for field water disinfection, Photochem. Photobiol. Sci., 2016, 15, 3, 447  crossref(new windwow)
Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine, RSC Adv., 2015, 5, 55, 44041  crossref(new windwow)
Photocatalytic Degradation of Pharmaceuticals Pollutants Using N-Doped TiO2 Photocatalyst: Identification of CFX Degradation Intermediates, Indian Chemical Engineer, 2017, 59, 3, 177  crossref(new windwow)
Enhanced visible light responsive photocatalytic activity of TiO2-based nanocrystallites: impact of doping sequence, RSC Adv., 2015, 5, 10, 7363  crossref(new windwow)
Immobilization of N, S-codoped BiOBr on glass fibers for photocatalytic degradation of rhodamine B, Powder Technology, 2014, 261, 170  crossref(new windwow)
Yao, F.; Sun, Y.; Tan, C. L.; Wei, S.; Zhang, X. J.; Hu, X. Y.; Fan, J. J. Korean Phys. Soc. 2011, 55, 932. crossref(new window)

Chen, W. G.; Yuan, P. F.; Zhang, S.; Sun, Q.; Liang, E.; Jia, Y. Physica B 2012, 407, 1038. crossref(new window)

Ebrahimi, R.; Tarhandeh, G.; Rafiey, S.; Narjabadi, M.; Khani, H. J. Korean Phys. Soc. 2011, 56, 92.

Zhao, H. M.; Wu, M. M.; Wang, Q.; Jena, P. Physica B 2011, 406, 4322. crossref(new window)

Yan, X. M.; Kang, J. L.; Gao, L.; Xiong, L.; Mei, P. Appl. Surf. Sci. 2013, 265, 778. crossref(new window)

Nakajima, T.; Lee, C. Y.; Yang, Y.; Schmuki, P. J. Mater. Chem. A 2013, 1, 1860.

Chen, K. S.; Feng, X. R.; Hu, R.; Li, Y. B.; Xie, K.; Li, Y.; Gu, H. S. J. Alloys Compd. 2013, 554, 72. crossref(new window)

Liu, B. K.; Wang, D. J.; Zhang, Y.; Fan, H. M.; Lin, Y. H.; Jiang, T. F.; Xie, T. F. Dalton Trans. 2013, 42, 2232. crossref(new window)

Dunnill, C. W.; Ansari, Z.; Kazas, A.; Perni, S.; Morgan, D. J.; Wilson, M.; Parkin, I. P. J. Mater. Chem. 2011, 21, 11854. crossref(new window)

Ku, Y.; Chen, W. J.; Hou, W. M. Sustain. Environ. Res. 2013, 23, 15.

Wang, D. H.; Jia, L.; Wu, X. L.; Lu, L. Q.; Xu, A. W. Nanoscale 2012, 4, 576. crossref(new window)

Wu, M. C.; Liao, H. C.; Cho, Y. C.; Toth, G.; Chen, Y. F.; Su, W. F.; Kordas, K. J. Mater. Chem. A 2013, 1, 5715. crossref(new window)

Yang, G. D.; Jiang, Z.; Shi, H. H.; Xiao, T. C.; Yan, Z. F. J. Mater. Chem. 2010, 20, 5301. crossref(new window)

Pan, J. H.; Han, G.; Zhou, R.; Zhao, X. S. Chem. Commun. 2011, 47, 6942. crossref(new window)

Gai, L. G.; Duan, X. Q.; Jiang, H. H.; Mei, Q. H.; Zhou, G. W.; Tian, Y.; Liu, H. Cryst. Eng. Commun. 2012, 14, 7662. crossref(new window)

Li, M.; Zhang, J. Y.; Zhang, Y. Catal. Commun. 2012, 29, 175. crossref(new window)