JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Preparation of Highly Visible-Light Photocatalytic Active N-Doped TiO2 Microcuboids
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Preparation of Highly Visible-Light Photocatalytic Active N-Doped TiO2 Microcuboids
Zhao, Kang; Wu, Zhiming; Tang, Rong; Jiang, Yadong;
  PDF(new window)
 Abstract
N-doped microcuboids were successfully prepared by a simple one-pot hydrothermal method. The samples were characterized by X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. It was found that the N-doped microcuboids enhanced absorption in the visible light region, and exhibited higher activity for photocatalytic degradation of model dyes. Based on the experimental results, a visible light induced photocatalytic mechanism was proposed for N-doped anatase microcuboids.
 Keywords
Nitrogen-doping; microcuboid;Visible photocatalyst;Mechanism;
 Language
English
 Cited by
1.
Photo-active float for field water disinfection, Photochem. Photobiol. Sci., 2016, 15, 3, 447  crossref(new windwow)
2.
Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
3.
Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine, RSC Adv., 2015, 5, 55, 44041  crossref(new windwow)
4.
Photocatalytic Degradation of Pharmaceuticals Pollutants Using N-Doped TiO2 Photocatalyst: Identification of CFX Degradation Intermediates, Indian Chemical Engineer, 2017, 59, 3, 177  crossref(new windwow)
5.
Enhanced visible light responsive photocatalytic activity of TiO2-based nanocrystallites: impact of doping sequence, RSC Adv., 2015, 5, 10, 7363  crossref(new windwow)
6.
Immobilization of N, S-codoped BiOBr on glass fibers for photocatalytic degradation of rhodamine B, Powder Technology, 2014, 261, 170  crossref(new windwow)
 References
1.
Yao, F.; Sun, Y.; Tan, C. L.; Wei, S.; Zhang, X. J.; Hu, X. Y.; Fan, J. J. Korean Phys. Soc. 2011, 55, 932. crossref(new window)

2.
Chen, W. G.; Yuan, P. F.; Zhang, S.; Sun, Q.; Liang, E.; Jia, Y. Physica B 2012, 407, 1038. crossref(new window)

3.
Ebrahimi, R.; Tarhandeh, G.; Rafiey, S.; Narjabadi, M.; Khani, H. J. Korean Phys. Soc. 2011, 56, 92.

4.
Zhao, H. M.; Wu, M. M.; Wang, Q.; Jena, P. Physica B 2011, 406, 4322. crossref(new window)

5.
Yan, X. M.; Kang, J. L.; Gao, L.; Xiong, L.; Mei, P. Appl. Surf. Sci. 2013, 265, 778. crossref(new window)

6.
Nakajima, T.; Lee, C. Y.; Yang, Y.; Schmuki, P. J. Mater. Chem. A 2013, 1, 1860.

7.
Chen, K. S.; Feng, X. R.; Hu, R.; Li, Y. B.; Xie, K.; Li, Y.; Gu, H. S. J. Alloys Compd. 2013, 554, 72. crossref(new window)

8.
Liu, B. K.; Wang, D. J.; Zhang, Y.; Fan, H. M.; Lin, Y. H.; Jiang, T. F.; Xie, T. F. Dalton Trans. 2013, 42, 2232. crossref(new window)

9.
Dunnill, C. W.; Ansari, Z.; Kazas, A.; Perni, S.; Morgan, D. J.; Wilson, M.; Parkin, I. P. J. Mater. Chem. 2011, 21, 11854. crossref(new window)

10.
Ku, Y.; Chen, W. J.; Hou, W. M. Sustain. Environ. Res. 2013, 23, 15.

11.
Wang, D. H.; Jia, L.; Wu, X. L.; Lu, L. Q.; Xu, A. W. Nanoscale 2012, 4, 576. crossref(new window)

12.
Wu, M. C.; Liao, H. C.; Cho, Y. C.; Toth, G.; Chen, Y. F.; Su, W. F.; Kordas, K. J. Mater. Chem. A 2013, 1, 5715. crossref(new window)

13.
Yang, G. D.; Jiang, Z.; Shi, H. H.; Xiao, T. C.; Yan, Z. F. J. Mater. Chem. 2010, 20, 5301. crossref(new window)

14.
Pan, J. H.; Han, G.; Zhou, R.; Zhao, X. S. Chem. Commun. 2011, 47, 6942. crossref(new window)

15.
Gai, L. G.; Duan, X. Q.; Jiang, H. H.; Mei, Q. H.; Zhou, G. W.; Tian, Y.; Liu, H. Cryst. Eng. Commun. 2012, 14, 7662. crossref(new window)

16.
Li, M.; Zhang, J. Y.; Zhang, Y. Catal. Commun. 2012, 29, 175. crossref(new window)