JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Controll over the Au@Ag Core-shell Nanoparticle 2D Patterns via Diblock Copolymer Inverse Micelle Templates and Investigation of the Surface Plasmon Based Optical Property
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Controll over the Au@Ag Core-shell Nanoparticle 2D Patterns via Diblock Copolymer Inverse Micelle Templates and Investigation of the Surface Plasmon Based Optical Property
Yoon, Min Ji; Kim, Jihyeon; Jang, Yoon Hee; Lee, Ji-Eun; Chung, Kyungwha; Quan, Li Na; Kim, Dong Ha;
  PDF(new window)
 Abstract
We demonstrated unique inter- and intra-plasmonic coupling effects in bimetallic Au@Ag core-shell NP arrays which are regularly or randomly arranged on self-assembled block copolymer (BCP) inverse micelle monolayers. Polyvinylpyrrolidone (PVP)-stabilized Au@Ag core-shell NP arrays in regular or disordered configuration were incorporated and assembled on reconstructed PS-b-P4VP inverse micelle templates through two types of processes. The intensively enhanced LSPR coupling properties of individual and assembled Au@Ag NPs were evaluated by UV-visible spectroscopy in terms of the type of ligand stabilizer, coupling between Au and Ag, thickness of Ag shell, and type of array configuration. Finally, Au@Ag core-shell NP arrays were employed as active substrates for surface enhanced Raman spectroscopy (SERS) and a significantly enhanced signal enhancement was observed in accordance with the coupling intensity of Au@Ag NPs patterns.
 Keywords
Au@Ag nanoparticle;Self-assembly;Block copolymer;Surface plasmon;Surface-enhanced Raman scattering;
 Language
Korean
 Cited by
 References
1.
Link, S.; El-Sayed, M. A. Annu. Rev. Phys. Chem. 2003, 54, 331-366. crossref(new window)

2.
Chen, J.; Lim, B.; Lee, E. P.; Xia, Y. Nano Today 2009, 4, 81-95. crossref(new window)

3.
Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824-830. crossref(new window)

4.
Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nat. Mater. 2008, 7, 442-453. crossref(new window)

5.
Hutter, E.; Fendler, J. H. Adv. Mater. 2004, 16, 1685-706. crossref(new window)

6.
Murphy, C. J.; San, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857-13870. crossref(new window)

7.
Xiong, B.; Zhou, R.; Hao, J. R.; Jia, Y. H.; He, Y.; Yeung, E. S. Nat. Commun. DOI: 10.1038/ncomms2722. crossref(new window)

8.
Lozano, X. L.; Mottet, C.; Weissker, H. C. J. Phys. Chem. C 2013, 117, 3062-3068.

9.
Gordon, T. R.; Paik, T.; Klein, D. R.; Naik, G. V.; Caglayan, H.; Boltasseva, A.; Murray, C. B. Nano Lett. 2013, 13, 2857-2863. crossref(new window)

10.
Barrow, S. J.; Funston, A. M.; Wei, X. Z.; Mulvaney, P. Nano Today 2013, 8, 138-167. crossref(new window)

11.
Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Adv. Mater. 2013, 25, 3264-3294. crossref(new window)

12.
Hess, O.; Pendry, J. B.; Maier, S. A.; Oulton, R. F.; Hamm, J. M.; Tsakmakidis, K. L., Nat. Mater. 2012, 11, 573-584. crossref(new window)

13.
Lee, W.; Lee, S. Y.; Briber, R. M.; Rabin, O. Adv. Funct. Mater. 2011, 21, 3424-3429. crossref(new window)

14.
Cho, W. J.; Kim, Y.; Kim, J. K. ACS Nano 2011, 6, 249-255.

15.
Wang, Y.; Becker, M.; Wang, L.; Liu, J.; Scholz, R. Peng, J.; Goesele, U.; Christiansen, S.; Kim, D. H.; Steinhart, M. Nano Lett. 2009, 9, 2384-2389. crossref(new window)

16.
Turkevich, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55. crossref(new window)

17.
Frens, G. Nature 1973, 241, 20.