Advanced SearchSearch Tips
DFT Study on the Different Oligomers of Glycerol (n
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DFT Study on the Different Oligomers of Glycerol (n
Valadbeigi, Younes; Farrokhpour, Hossein;
  PDF(new window)
Since a glycerol molecule has three active sites, two and one hydroxyl groups; it undergoes condensation by releasing water molecules to produce linear, nonlinear and heterocyclic oligomers. The Gibbs free energy (G), enthalpy (H) and internal energy (E) of 7 diglycerol, 15 triglycerol and 23 tetraglycerol isomers were calculated at B3LYP level of theory using 6-311++G(d, p) basis set, in both gas and aqueous phases. Linear oligomers, -diglycerol, , -triglycerol and , , -tetraglycerol, were found to be the most stable oligomers in aqueous phase. It was found that the stability of cyclic oligomers decreases as the size of their rings increases. Cyclic oligomers are produced by dehydration of the acyclic ones which is an endothermic reaction while its is negative. The dehydration reaction is less endothermic in aqueous phase.
Glycerol;Oligomerization;Dehydration reaction;Density functional theory;Cyclic isomers;
 Cited by
Neumann, W. H. C. Glycerin(e) and its history. In Cosmetic Science and Technology Series 11; Jungermann, E., Sonntag, N. O. V., Eds.; Marcel Dekker, Inc.: New York 1991; Chapter 2, pp 7-14.

Martin, A.; Richter, M. Eur. J. Lipid Sci. Technol. 2011, 113, 100-117. crossref(new window)

Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. Angew. Chem., Int. Ed. 2007, 46, 4434-4440. crossref(new window)

Zheng, Y.; Chen, X.; Shen, Y. Chem. Rev. 2008, 108, 5253-5277.

Barrault, J., Jerome, F. Eur. J. Lipid Sci. Technol. 2008, 110, 825-830. crossref(new window)

Jerome, F.; Pouilloux, Y.; Barrault, J. ChemSusChem 2008, 1, 586-613. crossref(new window)

Behr, A.; Gomes, J. P. Eur. J. Lipid Sci. Technol. 2010, 112, 31-50. crossref(new window)

Jakobson, G. Fette, Seifen, Anstrichmittel 1986, 88, 101-106. crossref(new window)

Richter, M.; Eckelt, R.; Krisnandi, Y. K.; Martin, A. Chem. Ing. Tech. 2008, 80, 1573-1577. crossref(new window)

Barrault, J.; Pouilloux, Y.; Clacens, J. M.; Vanhove, C.; Bancquart, S. Catal. Today 2002, 75, 177-181. crossref(new window)

Behrens, H.; Mieth, G. Die Nahrung 1984, 28, 815-835. crossref(new window)

Wittcoff, H.; Roach, J. R.; Miller, S. E. J. Am. Chem. Soc. 1947, 69, 2655-2657. crossref(new window)

Wittcoff, H.; Roach, J. R.; Miller, S. E. J. Am. Chem. Soc. 1949, 71, 2666-2668. crossref(new window)

Medeiros, M. A.; Araujo, M. H.; Augusti, R.; de Oliveira, L. C. A.; Lago, R. M. J. Braz. Chem. Soc. 2009, 20, 1667-1673. crossref(new window)

Calatayud, M.; Ruppert, A. M.; Weckhuysen, B. M. Chem. Eur. J. 2009, 15, 10864-10870. crossref(new window)

Ruppert, A. M.; Meeldijk, J. D.; Kuipers, B. W. M.; Ern, B. H.; Weckhuysen, B. M. Chem. Eur. J. 2008, 14, 2016-2024. crossref(new window)

Wei, D. Q.; Salahub, D. R. In Combined Quantum Mechanical and Molecular Mechanical Methods, Gao, J., Thompson, M. Eds.; Wiley: New York, 1998; Chapter 11-15.

Wei, D. Q.; Proynov, E. I.; Milet, A.; Salahub, D. R. J. Phys. Chem. 2000, 104, 2384. crossref(new window)

Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239−245.

Frisch, M. J.; et al. Gaussian 09, revision A.1.; Gaussian, Inc.: Wallingford, 2009.